After discovering new miRNAs, it is often difficult to determine their targets and effects on downstream protein expression. In situ hybridization (ISH) and immunohistochemistry (IHC) are two commonly used methods for clinical diagnosis and basic research. We used an optimized technique that simultaneously detects miRNAs, their binding targets and corresponding proteins on transferred serial formalin fixed paraffin embedded (FFPE) sections from patients. Combined with bioinformatics, this method was used to validate the reciprocal expression of specific miRNAs and targets that were detected by ISH, as well as the expression of downstream proteins that were detected by IHC. A complete analysis was performed using a limited number of transferred serial FFPE sections that had been stored for 1-4 years at room temperature. Some sections had even been previously stained with H&E. We identified a miRNA that regulates epithelial ovarian cancer, along with its candidate target and related downstream protein. These findings were directly validated using sub-cellular components obtained from the same patient sample. In addition, the expression of Nephrin (a podocyte marker) and Stmn1 (a recently identified marker related to glomerular development) were confirmed in transferred FFPE sections of mouse kidney. This procedure may be adapted for clinical diagnosis and basic research, providing a qualitative and efficient method to dissect the detailed spatial expression patterns of miRNA pathways in FFPE tissue, especially in cases where only a small biopsy sample can be obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2012.07.023 | DOI Listing |
Alzheimers Dement
December 2024
Brunel University London, London, United Kingdom.
Background: Psychosis occurs in 30-40% of individuals with AD. New insights into disease mechanisms may lead to novel pharmacological targets and treatments. Previous studies have focused on bulk tissue analysis with limited results.
View Article and Find Full Text PDFBackground: Neuropathologic inclusions formed by hyperphosphorylated protein tau in the brain are a hallmark of Alzheimer's disease and other human neurodegenerative disorders commonly referred to as tauopathies. Tau lesions differ in their disease-specific morphological presentations, affected cell type, subcellular compartments and tau isoforms present in the inclusions. In addition, tau filaments isolated from different tauopathies have distinct fibrillar structures that potentially underlie the morphological diversity of tau lesions.
View Article and Find Full Text PDFCancer Cytopathol
January 2025
Molecular Diagnostic Laboratory, Section of Cytopathology, Anatomic Pathology Department, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Introduction: This study aimed to assess the feasibility of implementing the Idylla system, an ultra-rapid, cartridge-based assay, as an extension of rapid on-site evaluation (ROSE) in cytology. The authors conducted a pilot validation study on specimens from non-small cell lung carcinoma, thyroid carcinoma, and melanoma, evaluating four assays designed to detect alterations in KRAS, EGFR, BRAF, gene fusions, and expression imbalances in ALK, ROS1, RET, NTRK1/2/3, and MET exon 14 skipping transcripts. They investigated the feasibility of providing accurate biomarker molecular testing results in a cytopathology laboratory within hours of specimen collection.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Pharmacology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
Recent work in single-cell imaging has allowed unprecedented insight into single-cell interactions that control disease progression. However, approaches to understanding the combined extracellular and cellular microenvironment are limited. In the current protocol, we describe an approach that allows single-cell type imaging using matrix-assisted laser desorption/ionization immunohistochemistry (MALDI-IHC) of UV (ultraviolet) photocleavable mass tags combined with N-glycomic and ECM-targeted proteomic imaging from the same formalin-fixed paraffin-embedded tissue section.
View Article and Find Full Text PDFRes Sq
December 2024
Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
Spatially mapping the transcriptome and proteome in the same tissue section can significantly advance our understanding of heterogeneous cellular processes and connect cell type to function. Here, we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multi-modality spatial omics approach that combines sequencing-based spatial transcriptomics and image-based spatial protein profiling on the same tissue section to enable both single-cell resolution cell typing and genome-scale interrogation of biological pathways. DBiTplus begins with reverse transcription for cDNA synthesis, microfluidic delivery of DNA oligos for spatial barcoding, retrieval of barcoded cDNA using RNaseH, an enzyme that selectively degrades RNA in an RNA-DNA hybrid, preserving the intact tissue section for high-plex protein imaging with CODEX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!