Highly polymorphic exons of the major histocompatibility complex (MHC, or HLA in humans) encode critical amino acids that bind foreign peptides. Recognition of the peptide-MHC complexes by T cells initiates the adaptive immune response. The particular structure of these exons facilitates gene conversion(GC) events, leading to the generation of new alleles. Estimates for allele creation and loss indicate that more than 10000 such alleles are circulating at low frequencies in human populations. Empirical sampling has affirmed this expectation. This suggests that the MHC loci have a system for moving valuable and often complex variants into adaptive service. Here, we argue that HLA loci carry many new mutant alleles prepared to assume epidemiologically meaningful roles when called on by selection provoked by exposure to new and evolving pathogens. Because new mutant alleles appear in a population at the lowest possible frequency (i.e., a single copy), they have typically been thought of as having little consequence. However, this large population of rare yet potentially valuable new alleles may contribute to pathogen defense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2012.06.007DOI Listing

Publication Analysis

Top Keywords

mutant alleles
8
alleles
6
reservoirs hla
4
hla alleles
4
alleles pools
4
pools rare
4
rare variants
4
variants enhance
4
enhance immune
4
immune defense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!