Analyses of methionine sulfoxide reductase activities towards free and peptidyl methionine sulfoxides.

Arch Biochem Biophys

Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Republic of Korea.

Published: November 2012

AI Article Synopsis

  • The study analyzed the kinetic properties of mammalian and yeast methionine sulfoxide reductases (MsrBs and MsrAs) to compare their abilities to reduce free and peptide methionine sulfoxide (Met-O).
  • The results showed that MsrBs were significantly less efficient at reducing free Met-O compared to yeast fRMsr, with a ratio of free to peptide activity being 1:20-40.
  • Conversely, MsrAs from both organisms exhibited much higher catalytic efficiency for free Met-O, with yeast MsrA showing a near-equal ability to reduce free and peptide Met-O, validated by in vivo assays.

Article Abstract

There have been insufficient kinetic data that enable a direct comparison between free and peptide methionine sulfoxide reductase activities of either MsrB or MsrA. In this study, we determined the kinetic parameters of mammalian and yeast MsrBs and MsrAs for the reduction of both free methionine sulfoxide (Met-O) and peptidyl Met-O under the same assay conditions. Catalytic efficiency of mammalian and yeast MsrBs towards free Met-O was >2000-fold lower than that of yeast fRMsr, which is specific for free Met-R-O. The ratio of free to peptide Msr activity in MsrBs was 1:20-40. In contrast, mammalian and yeast MsrAs reduced free Met-O much more efficiently than MsrBs. Their k(cat) values were 40-500-fold greater than those of the corresponding MsrBs. The ratio of free to peptide Msr activity was 1:0.8 in yeast MsrA, indicating that this enzyme can reduce free Met-O as efficiently as peptidyl Met-O. In addition, we analyzed the in vivo free Msr activities of MsrBs and MsrAs in yeast cells using a growth complementation assay. Mammalian and yeast MsrBs, as well as the corresponding MsrAs, had apparent in vivo free Msr activities. The in vivo free Msr activities of MsrBs and MsrAs agreed with their in vitro activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2012.07.009DOI Listing

Publication Analysis

Top Keywords

mammalian yeast
16
methionine sulfoxide
12
free
12
free peptide
12
yeast msrbs
12
msrbs msras
12
free met-o
12
vivo free
12
free msr
12
msr activities
12

Similar Publications

Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.

View Article and Find Full Text PDF

Objective: To evaluate the characteristics of antifungal immunity in patients with bilateral chronic rhinosinusitis with nasal polyps.

Material And Methods: The study included 74 patients with bilateral chronic rhinosinusitis with nasal polyps and a control group consisting of 30 almost healthy individuals. All patients underwent surgery and were divided into two groups: Group I - with liquid secretion (=39), Group II - with thick secretion in the paranasal sinuses (=35).

View Article and Find Full Text PDF

In Iran, there is limited information regarding the species distribution and antifungal susceptibility profiles of yeast isolates from drug addicts suffering from oral candidiasis (OC). In this study, 104 yeast isolates, including 98 Candida species and 6 uncommon yeasts, were collected from 71 drug abusers with OC. The susceptibility profiles of Candida spp.

View Article and Find Full Text PDF

Invasive fungal diseases are an important public health concern due to an increase in the at-risk population and high mortality associated with these infections. Managing invasive fungal infections poses a significant challenge given the limited antifungal options and the emergence of resistance in key fungal pathogens. Through a comprehensive approach, we evaluated the in vitro antifungal activity and the in vivo efficacy of two novel lipopeptides, AF and AF in murine models of disseminated candidiasis, cryptococcosis, and aspergillosis.

View Article and Find Full Text PDF

Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!