Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNA(i)(Met)) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNA(i)(Met)in vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNA(i)(Met). In addition, AIMP3 discriminates Met-tRNA(i)(Met) from Met-charged elongator tRNA based on filter-binding assay. Pull-down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNA(i)(Met) for the delivery of Met-tRNA(i)(Met) to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNA(i)(Met) bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNA(i)(Met) transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2012.07.020 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).
View Article and Find Full Text PDFNat Commun
December 2024
Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen Straße 25, 81377, Munich, Germany.
Human Schlafen 11 (SLFN11) is sensitizing cells to DNA damaging agents by irreversibly blocking stalled replication forks, making it a potential predictive biomarker in chemotherapy. Furthermore, SLFN11 acts as a pattern recognition receptor for single-stranded DNA (ssDNA) and functions as an antiviral restriction factor, targeting translation in a codon-usage-dependent manner through its endoribonuclease activity. However, the regulation of the various SLFN11 functions and enzymatic activities remains enigmatic.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan.
Proteins play a variety of roles in biological phenomena in cells. Proteins are synthesized by the ribosome, which is a large molecular complex composed of proteins and nucleic acids. Among the many molecules involved in the process of protein synthesis, tRNA is one of the essential molecules.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon.
View Article and Find Full Text PDFArch Virol
November 2024
School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!