Ethnopharmacological Relevance: From over 100 Chinese clinical trial publications, we retrieved 22 commercial preparations and 17 clinical prescriptions used as Traditional Chinese Medicine (TCM) for treating mycotic vaginitis, typically caused by Candida albicans. The 8 most frequently used plants as well as another 7 TCM and 18 folk medicinal plants used in the South of China for antifungal therapy were investigated for in vitro antifungal activity.
Materials And Methods: For each plant we tested 4 extracts prepared with different solvents (water, ethanol, acetone, and n-hexane) for inhibition of Candida albicans and Saccharomyces cerevisiae growth in liquid culture.
Results: Some plants have quite strong antifungal activity, such as Tujinpi (Pseudolarix kaempferi Gord.), of which each extract could significantly inhibit the growth of both tested fungi. In addition, the acetone extract of Kushen (Sophora flavescens Ait.), the ethanol, acetone, and hexane extracts of Guanghuoxiang (Pogostemon cablin (Blanco) Benth.) and Gaoliangjiang (Alpinia officinarum Hance), the hexane extract of Dingxiang (Eugenia caryophyllata Thunb.), and the ethanol and acetone extracts of Kulianpi (Melia toosendan Sieb. et Zucc.) and Laliao (Polygonum hydropiper L.), all inhibited Candida albicans growth by more than 50%. In some cases growth inhibition was even comparable to that by the clinically used antifungal miconazole, which we used as our positive control.
Conclusions: The majority of plants, whose clinical use for antifungal treatment is well supported within TCM or Chinese folk medicine, show in vitro antifungal activity against Candida albicans. Since Candida species represent the most common fungal pathogen of humans, these results provide more scientific evidence supporting the clinical application of these plants, and can serve as a starting point for new drug discovery from TCM and Chinese folk medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2012.06.019 | DOI Listing |
Braz J Microbiol
January 2025
Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, 721102, Midnapore, West Bengal, India.
Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed to be University), Kolhapur- 416-003, Maharashtra, India.
Increased virulence and drug resistance in species of resulted in reduced disease control and further demand the development of potent antifungal drugs. The repurposing of non-antifungal drugs and combination therapy has become an attractive alternative to counter the emerging drug resistance and toxicity of existing antifungal drugs against and non-albicans species. This study aimed to accelerate antifungal drug development process by drug repurposing approach.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFThe rise of drug-resistant fungal pathogens, including , highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening and revealed novel lipopeptaibiotics, coniotins, from WAC11161, which were undetectable in crude extracts.
View Article and Find Full Text PDFClin Transplant
February 2025
Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA.
Background: Invasive Candida infections (ICI) are the most common invasive fungal infections in solid organ transplant recipients. There are limited contemporary data on the risk factors for infection in heart transplant (HT) recipients especially since the expansion of temporary mechanical circulatory support (MCS) use.
Methods: This was a case-control study conducted at a tertiary care academic hospital of HT recipients from January 2022 to January 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!