Site-selective spectroscopy is a tool that can be used to uncover the presence of multiple sites available to optically active ions in host lattices. In this Article, we present techniques that can be applied to appraise the different sites that may occur in systems where charge compensation is required or in systems where such compensation is not present. We then consider some garnet crystals doped with chromium ions. For the Cr-doped garnets (YAG, GGG, GSGG, and CYMGG), we present luminescence and lifetime data over a wide temperature range, and infer not only the presence of different centers, but also the interaction among them as a function of temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3022584DOI Listing

Publication Analysis

Top Keywords

site-selective spectroscopy
8
garnet crystals
8
crystals doped
8
doped chromium
8
chromium ions
8
spectroscopy garnet
4
ions site-selective
4
spectroscopy tool
4
tool uncover
4
uncover presence
4

Similar Publications

The potential of cannabinoids to address public health challenges has stimulated exploration into alternative sources and production technologies. Radula marginata, an endemic Aotearoa/New Zealand liverwort, produces the bibenzyl cannabinoid perrottetinene (PET), analogous to Cannabis psychoactive tetrahydrocannabinol (THC). Structural differences between PET and THC could alter therapeutic interactions and mitigate adverse side effects.

View Article and Find Full Text PDF

Understanding electron transport in self-assembled monolayers on metal nanoparticles (NPs) is crucial for developing NP-based nanodevices. This study investigates ultrafast electron transport through aromatic molecules on NP surfaces resonant Auger electron spectroscopy (RAES) with a core-hole-clock (CHC) approach. Aromatic molecule-coated Au NPs are deposited to form condensed NP films, and flat monolayers are prepared for comparison.

View Article and Find Full Text PDF

Time-Resolved Probing of the Iodobenzene C-Band Using XUV-Induced Electron Transfer Dynamics.

ACS Phys Chem Au

November 2024

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.

Time-resolved extreme ultraviolet spectroscopy was used to investigate photodissociation within the iodobenzene C-band. The carbon-iodine bond of iodobenzene was photolyzed at 200 nm, and the ensuing dynamics were probed at 10.3 nm (120 eV) over a 4 ps range.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

Building artificial neurons and synapses is key to achieving the promise of energy efficiency and acceleration envisioned for brain-inspired information processing. Emulating the spiking behavior of biological neurons in physical materials requires precise programming of conductance nonlinearities. Strong correlated solid-state compounds exhibit pronounced nonlinearities such as metal-insulator transitions arising from dynamic electron-electron and electron-lattice interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!