C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing.

J Am Chem Soc

The Skaggs Institute for Chemical Biology and Department of Chemistry, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.

Published: August 2012

AI Article Synopsis

  • Bacteria use quorum sensing (QS) for cell communication, affecting gene expression based on their population.
  • Autoinducer-2 (AI-2), a key QS signaling molecule found in many bacteria, is derived from DPD, but there’s still a lot to learn about how different species communicate.
  • Researchers have created new DPD analogues called C4-alkoxy-HPDs, with some showing greater potency as QS activators than DPD in Vibrio harveyi, enhancing our understanding of the AI-2 QS system.

Article Abstract

Bacteria have developed cell-to-cell communication mechanisms, termed quorum sensing (QS), that regulate bacterial gene expression in a cell population-dependent manner. Autoinducer-2 (AI-2), a class of QS signaling molecules derived from (4S)-4,5-dihydroxy-2,3-pentanedione (DPD), has been identified in both Gram-negative and Gram-positive bacteria. Despite considerable interest in the AI-2 QS system, the biomolecular communication used by distinct bacterial species still remains shrouded. Herein, we report the synthesis and evaluation of a new class of DPD analogues, C4-alkoxy-5-hydroxy-2,3-pentanediones, termed C4-alkoxy-HPDs. Remarkably, two of the analogues were more potent QS agonists than the natural ligand, DPD, in Vibrio harveyi. The findings presented extend insights into ligand-receptor recognition/signaling in the AI-2 mediated QS system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438919PMC
http://dx.doi.org/10.1021/ja305532yDOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
c4-alkoxy-hpd potent
4
potent class
4
class synthetic
4
synthetic modulators
4
modulators surpassing
4
surpassing nature
4
ai-2
4
nature ai-2
4
ai-2 quorum
4

Similar Publications

Carbapenem resistant Acinetobacter baumannii has evolved as the most troublesome microorganism with multiple virulence factors. Biofilm formation, porins, micronutrient capturing mechanism and quorum sensing, provide protection against desiccation, host-pathogen killing and enhance its persistence. The conservation of these factors between colonizing and pathogenic carbapenem resistant A.

View Article and Find Full Text PDF

Iron-loaded diatomite (Fe-DE) was developed as the innovative material to enhance anammox granular sludge (AnGS) and mainstream anammox performance. By adding Fe-DE with the Fe:DE ratio of 1:20 and the dosage of 3 g/L, the start-up period of mainstream anammox process was shortened from 29 d to 17 d and its nitrogen removal rate was increased from 0.234 kg N/(m·d) to 0.

View Article and Find Full Text PDF

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

Gut bacteria from the Enterobacteriaceae family are a major cause of opportunistic infections worldwide. Given their prevalence among healthy human gut microbiomes, interspecies interactions may play a role in modulating infection resistance. Here we uncover global ecological patterns linked to Enterobacteriaceae colonization and abundance by leveraging a large-scale dataset of 12,238 public human gut metagenomes spanning 45 countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!