Chemical characterization and factor analysis of PM2.5 in two sites of Monterrey, Mexico.

J Air Waste Manag Assoc

Department of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Michoacan, Mexico.

Published: July 2012

The Monterrey Metropolitan Area (MMA) has shown a high concentration of PM2.5 in its atmosphere since 2003. The contribution of possible sources of primary PM2.5 and its precursors is not known. In this paper we present the results of analyzing the chemical composition of sixty 24-hr samples of PM2.5 to determine possible sources of PM2.5 in the MMA. The samples were collected at the northeast and southeast of the MMA between November 22 and December 12, 2007, using low-volume devices. Teflon and quartz filters were used to collect the samples. The concentrations of 16 airborne trace elements were determined using x-ray fluorescence (XRF). Anions and cations were determined using ion chromatography. Organic carbon (OC) and elemental carbon (EC) were determined by thermal optical analysis. The results show that Ca had the maximum mean concentration of all elements studied, followed by S. Enrichment factors above 50 were calculated for S, Cl, Cu, Zn, Br and Pb. This indicates that these elements may come from anthropogenic sources. Overall, the major average components of PM2.5 were OC (41.7%), SO4(2-) (22.9%), EC (7.4%), crustal material (11.4%), and NO3- (12.6%), which altogether accounted for 96% of the mass. Statistically, we did not find any difference in SO4(2-) concentrations between the two sites. The fraction of secondary organic carbon was between 24% and 34%. The results of the factor analysis performed over 10 metals and OC and EC show that there are three main sources of PM2.5: crustal material and vehicle exhaust; industrial activity; and fuel oil burning. The results show that SO4(2-), OC, and crustal material are important components of PM2.5 in MMA. Further work is necessary to evaluate the proportion of secondary inorganic and organic aerosol in order to have a better understanding of the sources and precursors of aerosols in the MMA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2012.681421DOI Listing

Publication Analysis

Top Keywords

crustal material
12
factor analysis
8
pm25
8
sources pm25
8
pm25 mma
8
organic carbon
8
components pm25
8
mma
5
sources
5
chemical characterization
4

Similar Publications

The return of stagnant slab recorded by intraplate volcanism.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.

View Article and Find Full Text PDF

Apatite is widely used as an indicator mineral to reflect the characteristics and petrogenesis of host magma. In this study, we present apatite geochemical and in-situ Sr-Nd isotopic data of monzogranite, granodiorite and dioritic enclave in the eastern Songnen-Zhangguangcai Range Massif, aiming to fingerprinting their petrogenesis and magmatic evolution processes. Based on apatite textures and geochemistry characteristics, the apatites were categorized into two distinct groups.

View Article and Find Full Text PDF

This study investigates the quantities of Rare Earth Elements (REEs) and Potentially Toxic Elements (PTEs) in Dong Nai Province's surface soils. Atomic Absorption Spectrometry (AAS) and Instrumental Neutron Activation Analysis (INAA) were used to determine element concentrations. To validate the concentration results, established reference materials (NIST 2711 and IAEA Soil-7) were used.

View Article and Find Full Text PDF

The subseafloor crustal biosphere: Ocean's hidden biogeochemical reactor.

Front Microbiol

November 2024

Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.

Underlying the thick sediment layer in ocean basins, the flow of seawater through the cracked and porous upper igneous crust supports a previously hidden and largely unexplored active subsurface microbial biome. Subseafloor crustal systems offer an enlarged surface area for microbial habitats and prolonged cell residence times, promoting the evolution of novel microbial lineages in the presence of steep physical and thermochemical gradients. The substantial metabolic potential and dispersal capabilities of microbial communities within these systems underscore their crucial role in biogeochemical cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!