Background: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai.

Findings: The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL) with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy.

Conclusion: The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398977PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040695PLOS

Publication Analysis

Top Keywords

hydroxycinnamic acid
12
acid amides
12
mechanisms resistance
8
high resolution
8
isogenic lines
8
derived wheat
8
wheat genotype
8
resistant susceptible
8
amides phenolic
8
phenolic glucosides
8

Similar Publications

In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H], [M + 2H] and/or [M + 3H] in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H] generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]/[M + H] ratios reflected their structures, such as the substituting groups and positions.

View Article and Find Full Text PDF

Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.

View Article and Find Full Text PDF

Excessive production of reactive oxygen species (ROS) during cryopreservation and post-thawing affects sperm quality and subsequent fertilizing capacity. Nanoparticles (NPs) with antioxidative properties can improve sperm function and male fertility. The aim of this study was to assess the effect of 100 µM ρ-coumaric acid (ρ-CA), 0.

View Article and Find Full Text PDF

Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy.

View Article and Find Full Text PDF

Identification of allelochemicals under continuous cropping of Morchella mushrooms.

Sci Rep

December 2024

Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Continuous cropping obstacle has been becoming the bottleneck for the stable development of morel cultivation. The allelopathic effect of soil allelochemicals may play an instrumental role in the morel soil sickness. In this study, the allelochemicals were identified by gas chromatography-mass spectrometry (GC-MS) combined with in vitro bioassay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!