The role of genes domesticated from LTR retrotransposons and retroviruses in mammals.

Front Microbiol

School of Health Sciences, Tokai University, Isehara, Kanagawa, Japan.

Published: October 2012

The acquisition of multiple genes from long terminal repeat (LTR) retrotransposons occurred in mammals. Genes belonging to a sushi-ichi-related retrotransposon homologs (SIRH) family emerged around the time of the establishment of two viviparous mammalian groups, marsupials and eutherians. These genes encode proteins that are homologous to a retrotransposon Gag capsid protein and sometimes also have a Pol-like region. We previously demonstrated that PEG10 (SIRH1) and PEG11/RTL1 (SIRH2) play essential but different roles in placental development. PEG10 is conserved in both the marsupials and the eutherians, while PEG11/RTL1 is a eutherian-specific gene, suggesting that these two domesticated genes were deeply involved in the evolution of mammals via the establishment of the viviparous reproduction system. In this review, we introduce the roles of PEG10 and PEG11/RTL1 in mammalian development and evolution, and summarize the other genes domesticated from LTR retrotransposons and endogenous retroviruses (ERVs) in mammals. We also point out the importance of DNA methylation in inactivating and neutralizing the integrated retrotransposons and ERVs in the process of domestication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406341PMC
http://dx.doi.org/10.3389/fmicb.2012.00262DOI Listing

Publication Analysis

Top Keywords

ltr retrotransposons
12
genes domesticated
8
domesticated ltr
8
establishment viviparous
8
marsupials eutherians
8
genes
5
role genes
4
retrotransposons
4
retrotransposons retroviruses
4
mammals
4

Similar Publications

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times.

View Article and Find Full Text PDF

Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis).

View Article and Find Full Text PDF

Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of 'grapefruit-drug interactions' in humans. Most of the pathway genes have not been identified in citrus. We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!