Many patients with diabetes experience high variability in glucose concentrations that includes prolonged hyperglycemia or hypoglycemia. Models predicting a subject's future glucose concentrations can be used for preventing such conditions by providing early alarms. This paper presents a time-series model that captures dynamical changes in the glucose metabolism. Adaptive system identification is proposed to estimate model parameters which enable the adaptation of the model to inter-/intra-subject variation and glycemic disturbances. It consists of online parameter identification using the weighted recursive least squares method and a change detection strategy that monitors variation in model parameters. Univariate models developed from a subject's continuous glucose measurements are compared to multivariate models that are enhanced with continuous metabolic, physical activity and lifestyle information from a multi-sensor body monitor. A real life application for the proposed algorithm is demonstrated on early (30 min in advance) hypoglycemia detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409594 | PMC |
http://dx.doi.org/10.1016/j.automatica.2012.05.076 | DOI Listing |
Talanta
January 2025
Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China. Electronic address:
Alternariol (AOH) has attracted much attention as an emerging toxin in edible herbs that can pose potential carcinogenic risks to human. However, the rapid detection of AOH to ensure food safety remains a challenge. Here, a CRISPR-Cas12a-mediated aptamer-based sensor (aptasensor) was proposed for the sensitive quantification of AOH by using a personal glucose meter.
View Article and Find Full Text PDFPhytomedicine
December 2024
Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:
Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.
View Article and Find Full Text PDFJ Neurol Sci
December 2024
Emergency Department, Stroke Unit, Sapienza University of Rome, Rome, Italy. Electronic address:
Background And Aims: Iron deficiency (ID) is a prognostic factor in heart failure and acute coronary syndrome. However, its role in cerebrovascular diseases is controversial. We aimed to determine the impact of ID on the functional outcome of acute ischemic stroke patients.
View Article and Find Full Text PDFThis study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFTendinopathy is an age-associated degenerative disease characterized by a loss in extracellular matrix (ECM). Since glucose and glutamine metabolism is critical to amino acid synthesis and known to be altered in aging, we sought to investigate if age-related changes in metabolism are linked to changes in ECM remodeling. We exposed young and aged tendon explants to various concentrations of glucose and glutamine to observe changes in metabolic processing (enzyme levels, gene expression, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!