Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met(106) residue in the TM2 of COPT6 is functionally essential, the conserved Met(27) in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460430 | PMC |
http://dx.doi.org/10.1074/jbc.M112.397810 | DOI Listing |
Cell Biol Toxicol
December 2024
Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, People's Republic of China.
The prevalence of breast cancer (BRCA) is notable in the female population, being a commonly diagnosed malignancy, where the management of copper levels is crucial for treatment success. This research aims to explore the influence of copper homeostasis on BRCA therapy, with a specific focus on the role of Cyclin-Dependent Kinase 1 (CDK1) and its relationship to copper regulation. A novel thermosensitive hydrogel incorporating nanoparticles (NPs) was engineered to synergize with the chemotherapy drug vincristine (VCR) in inhibiting tumor growth and metastasis.
View Article and Find Full Text PDFChemistry
December 2024
CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble, IRIG/SYMMES, FRANCE.
Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.
Introduction: Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (CuO USNPs) was developed to address sepsis-induced lung injury (SILI).
Methods: The synthesized nanoparticles were thoroughly characterized to assess their properties.
Copper is an essential element involved in various biochemical processes, such as mitochondrial energy production and antioxidant defense, but improper regulation can lead to cellular toxicity and disease. Copper Transporter 1 (CTR1) plays a key role in copper uptake and maintaining cellular copper homeostasis. Although CTR1 endocytosis was previously thought to reduce copper uptake when levels are high, it was unclear how rapid regulation is achieved.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:
Hippo signaling plays a crucial role in the cellular response to various stressors, such as mechanical stress, metabolic stress, and hypoxic stress. However, its physiological significance in copper (Cu) stress remains poorly understood. Here, we demonstrated aberrant activation of Hippo-YAP signaling in sheep pancreas and pancreatic organoids exposed to excessive Cu, accompanied by significant pathological changes, elevated levels of oxidative stress, and impaired mitochondrial structure and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!