Induction of heat shock proteins in cerebral cortical cultures by celastrol.

Cell Stress Chaperones

Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.

Published: March 2013

Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS) are 'protein misfolding disorders' of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer's affecting cells in the cerebral cortex, Parkinson's targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer's is more frequent than Parkinson's and ALS. Heat shock proteins (Hsps) are 'protein repair agents' that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against 'protein misfolding disorders' that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer's may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at 'days in vitro' (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer's disease, a neurodegenerative 'protein misfolding disorder' of the adult brain that targets cells in the cerebral cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581628PMC
http://dx.doi.org/10.1007/s12192-012-0364-0DOI Listing

Publication Analysis

Top Keywords

heat shock
12
'protein misfolding
12
shock proteins
8
cortical cultures
8
alzheimer's disease
8
misfolding disorders'
8
cells cerebral
8
cerebral cortex
8
hsc70 hsp27
8
cell populations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!