A photo-polymerizable Bisphenol-A diglycidylether methacrylate resin was characterized by Fourier transform infrared spectroscopy after its irradiation under different conditions to identify the best curing. Bonding-agent free composites with particles of ball-milled glass, silica and titania at loading of 10 and 50%wt were prepared, and their viscoelastic properties investigated by dynamic mechanical analysis, in experimental conditions close to the working environment in the mouth. All composites showed good stability at the considered conditions. The stiffest composite was the silica one, which was based on the smallest primary particles. The storage moduli close to room temperature (25°C) and mastication frequency (1 Hz) were extracted as reference bending moduli for the materials, and compared to static compressive moduli measured by nanoindentation performed by atomic force microscopy.Nanoindentation showed qualitative results in agreement with dynamic mechanical analysis as to the ranking of different materials, while resulting in approximately two-fold elastic modulus.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2011-251DOI Listing

Publication Analysis

Top Keywords

glass silica
8
silica titania
8
dynamic mechanical
8
mechanical analysis
8
preparation characterization
4
characterization bisgma-resin
4
bisgma-resin dental
4
dental restorative
4
restorative composites
4
composites glass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!