A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasma microRNA profiles for bladder cancer detection. | LitMetric

Background: Bladder cancer (BC) is a burdensome disease with significant morbidity, mortality, and cost. The development of novel plasma-based biomarkers for BC diagnosis and surveillance could significantly improve clinical outcomes and decrease health expenditures. Plasma miRNAs are promising biomarkers that have yet to be rigorously investigated in BC.

Objective: To determine the feasibility and efficacy of detecting BC with plasma miRNA signatures.

Materials And Methods: Plasma miRNA was isolated from 20 patients with bladder cancer and 18 noncancerous controls. Samples were analyzed with a miRNA array containing duplicate probes for each miRNA in the Sanger database. Logistic regression modeling was used to optimize diagnostic miRNA signatures to distinguish between muscle invasive BC (MIBC), non-muscle-invasive BC (NMIBC) and noncancerous controls.

Results: Seventy-nine differentially expressed plasma miRNAs (local false discovery rate [FDR] <0.5) in patients with or without BC were identified. Some diagnostically relevant miRNAs, such as miR-200b, were up-regulated in MIBC patients, whereas others, such as miR-92 and miR-33, were inversely correlated with advanced clinical stage, supporting the notion that miRNAs released in the circulation have a variety of cellular origins. Logistic regression modeling was able to predict diagnosis with 89% accuracy for detecting the presence or absence of BC, 92% accuracy for distinguishing invasive BC from other cases, 100% accuracy for distinguishing MIBC from controls, and 79% accuracy for three-way classification between MIBC, NIMBC, and controls.

Conclusions: This study provides preliminary data supporting the use of plasma miRNAs as a noninvasive means of BC detection. Future studies will be required to further specify the optimal plasma miRNA signature, and to apply these signatures to clinical scenarios, such as initial BC detection and BC surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226073PMC
http://dx.doi.org/10.1016/j.urolonc.2012.06.010DOI Listing

Publication Analysis

Top Keywords

bladder cancer
12
plasma mirnas
8
plasma mirna
8
plasma
5
mirna
5
plasma microrna
4
microrna profiles
4
profiles bladder
4
cancer detection
4
detection background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!