New insight into photo-bromination processes in saline surface waters: the case of salicylic acid.

Sci Total Environ

UMR HydroSciences 5569, Montpellier University, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France.

Published: October 2012

AI Article Synopsis

  • Salicylic acid can be photo-brominated in sunlit saline waters, producing low amounts of 5-bromosalicylic and 3,5-dibromosalicylic acids, which may disrupt endocrine functions due to their inhibition of specific enzymes.
  • Two mechanisms are responsible for this photochemical process: one involves the formation of reactive brominated radical species reacting with salicylic acid, and the other involves hypobromous acid generated through bromine ion oxidation.
  • Field studies confirm the environmental relevance of these reactions by detecting salicylic acid and its brominated derivatives in a brackish coastal lagoon.

Article Abstract

It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20α-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br, Br(2)(-)) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.07.015DOI Listing

Publication Analysis

Top Keywords

salicylic acid
20
acid
9
saline surface
8
surface waters
8
35-dibromosalicylic acid
8
involve formation
8
nitric oxide
8
salicylic
5
insight photo-bromination
4
photo-bromination processes
4

Similar Publications

A MACPF Protein OsCAD1 Balances Plant Growth and Immunity Through Regulating Salicylic Acid Homeostasis in Rice.

Plant Cell Environ

January 2025

State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, China.

Unraveling the mechanisms behind plant growth and immunity contributes to effective crop improvement. Membrane attack complex/perforin (MACPF) domain proteins play vital roles in innate and adaptive immunity in vertebrates; however, their molecular functions in plants remain largely unexplored. Here, we isolated and characterized a rice mutant, Oryza sativa constitutively activated cell death 1 (oscad1), which exhibited a lesion mimic phenotype and growth inhibition with increased cell death, elevated ROS accumulation, and enhanced resistance to bacterial blight Xanthomonas oryzae pv.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

Unlabelled: This research aimed to assess the biological characteristics of both submerged culture mycelium and artificial basidioma of NTH-PL4. The extraction yield from the basidioma surpassed that of the mycelium. The use of hot water extract resulted in the highest total carbohydrate content, predominantly found in the basidioma.

View Article and Find Full Text PDF

Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T.

View Article and Find Full Text PDF

Multiple drug resistance (MDR) remains a major obstacle in effective breast cancer chemotherapy. This study explores the role of HSP90AA1 in driving MDR and evaluates the potential of magnetic nanoparticles (FeO@SA) loaded with salicylic acid (SA) to counteract drug resistance. A comprehensive screening of 200 SA-related target genes identified nine core genes, including HSP90AA1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!