D-gluco-configured building block derived from D-(+)-gluconolactone has served as a common chiral template for the synthesis of enantiopure D- and L-xylo-configured 1,2,3,4-alkane tetrols. This has enabled synthesis of medicinally important guggultetrols and their enantiomers from a common starting point. Wittig and Grignard reactions are the key steps used for the incorporation of lipophilic chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2012.06.005 | DOI Listing |
Sci Rep
December 2024
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, People's Republic of China.
A well-designed scheduling plan that meets the practical constraints of the workshop is crucial for enhancing production efficiency in ship plane block assembly. Unlike traditional flow line scheduling problems, the scheduling optimization problem for ship plane block flow line involves dual resource constraints, including work teams and spare parts supply limitations. This can be seen as a Dual Resource Constrained Blocked Flow Shop Scheduling Problem (DRCBFSP).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:
Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria.
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Key Laboratory for Nonferrous Materials (MOE), School of Materials Science and Engineering, Central South University, Changsha 410083, China.
Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction.
View Article and Find Full Text PDFGels
December 2024
Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!