We describe an efficient methodology for the preparation of new chiral zinc complexes by assembling dynamically racemic biphenol derivatives and chiral 1,2-diamines with suitable zinc(II) precursors. Mononuclear and dinuclear zinc(II) complexes were formed from differently substituted biphenols. The solid-state and solution structural characterization of the resulting compounds allowed us to demonstrate a preferential sense of induced axial chirality for mononuclear complexes, a phenomenon that was not observed for the dinuclear ones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic300915pDOI Listing

Publication Analysis

Top Keywords

chiral zinc
8
zinc complexes
8
axial chirality
8
complexes
4
complexes synthesis
4
synthesis structure
4
structure induction
4
induction axial
4
chirality describe
4
describe efficient
4

Similar Publications

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Ionic liquid (IL) units in heterogeneous catalysts exhibit synergistic effects to enhance catalytic performance and stabilize catalytically active centers, while also preventing the degradation of catalysts during the reaction process. Ionic liquid units in IL-functionalized CMOF catalysts enhance their catalytic performance in a synergistic manner. However, not only are the yields of IL-functionalized CMOFs obtained with post-synthesis methods low, but they also lead to blocking of the MOF pores and leaching of the ionic liquid.

View Article and Find Full Text PDF

Amines are produced through various industrial and biological processes, contributing significantly to atmospheric pollution, particularly in the troposphere. Moreover, amine-related pollution raises global concerns due to its detrimental effects on human health, environmental quality, and the preservation of animal species. Low-molecular-weight volatile amines, categorized as volatile organic compounds (VOCs), are present in the atmosphere, and they represent the main cause of air pollution.

View Article and Find Full Text PDF

Four mononuclear bioefficient zinc coordination complexes [Zn(NN)](ClO) (-) involving chiral bidentate Schiff base ligands have been synthesized and characterized by IR, H, and C NMR spectroscopy and mass spectrometry. X-ray crystal structures of three of the zinc complexes revealed that the zinc metal ion is hexacoordinated, exhibiting a distorted octahedral geometry where both the nitrogen atoms (NN = pyridyl and imine) of imines are coordinated to the central zinc ion. The isolated zinc complexes were evaluated for their antimicrobial activity in vitro against , , and , displaying varying levels of growth inhibition.

View Article and Find Full Text PDF

A processable and recyclable gelatin/carboxymethyl chitosan hydrogel electrolyte for high performance flexible zinc-ion batteries.

Carbohydr Polym

February 2025

Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:

Hydrogels are currently under extensive research as flexible quasi-solid electrolytes for zinc-ion batteries. However, the non-degradability and non-recyclability of hydrogel electrolytes pose significant issues, leading to resource wastage and plastic pollution. Moreover, the increasing needs of hydrogel electrolyte with various shapes to meet individual requirements of next-generation flexible battery raise significant challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!