Agents with selective toxicity to hypoxic cells have shown promise as adjuncts to radiotherapy. Our previous studies showed that the bioreductive alkylating agent KS119 had an extremely large differential toxicity to severely hypoxic and aerobic cells in cell culture, and was effective in killing the hypoxic cells of EMT6 mouse mammary tumors in vivo. However, the limited solubility of that compound precluded its development as an anticancer drug. Here we report our initial studies with KS119W, a water-soluble analog of KS119. The cytotoxicity of KS119W to EMT6 cells in vitro was similar to that of KS119, with both agents producing only minimal cytotoxicity to aerobic cells even after intensive treatments, while producing pronounced cytotoxicity to oxygen-deficient cells. This resulted in large differentials in the toxicities to hypoxic and aerobic cells (>1,000-fold at 10 μM). Low pH had only minimal effects on the cytotoxicity of KS119W. Under hypoxic conditions, EMT6 cells transfected to express high levels of either human or mouse versions of the repair protein O(6)-alkylguanine-DNA alkyltransferase, which is also known as O(6)-methylguanine DNA-methyltransferase, were much more resistant to KS119W than parental EMT6 cells lacking O(6)-alkylguanine-DNA alkyltransferase, confirming the importance of DNA O-6-alkylation to the cytotoxicity of this agent. Studies with EMT6 tumors in BALB/c Rw mice using both tumor cell survival and tumor growth delay assays showed that KS119W was effective as an adjunct to irradiation for the treatment of solid tumors in vivo, producing additive or supra-additive effects in most combination regimens for which the interactions could be evaluated. Our findings encourage additional preclinical studies to examine further the antineoplastic effects of KS119W alone and in combination with radiation, and to examine the pharmacology and toxicology of this new bioreductive alkylating agent so that its potential for clinical use as an adjuvant to radiotherapy can be evaluated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474200 | PMC |
http://dx.doi.org/10.1667/rr2934.1 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy.
Previous studies in sports science suggested that regular exercise has a positive impact on human health. However, the effects of endurance sports and their underlying mechanisms are still not completely understood. One of the main debates regards the modulation of immune dynamics in high-intensity exercise.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFHeliyon
July 2024
The First Hospital of Lanzhou University, Lanzhou, China, 730000.
Gastric cancer is characterized by a high incidence and mortality rate, with therapeutic efficacy currently constrained by substantial limitations. Aerobic glycolysis in cancer constitutes a pivotal aspect of the reprogramming of energy metabolism in tumor cells and profoundly influences the malignant progression of cancer. CircRNAs, serving as stable endogenous RNA, have been shown to regulate downstream targets by sponging miRNAs, which in turn are involved in the regulation of multiple malignant behaviors in a variety of cancers through the CircRNA-miRNA axis, suggesting that CircRNAs could be used as potential therapeutic targets for cancer.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil.
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!