Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

Phys Rev Lett

Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, München 80539, Germany.

Published: July 2012

The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.109.037205DOI Listing

Publication Analysis

Top Keywords

nonadiabatic dynamics
4
dynamics coupled
4
coupled nanomechanical
4
nanomechanical resonator
4
resonator modes
4
modes landau-zener
4
landau-zener transition
4
transition fundamental
4
fundamental concept
4
concept dynamical
4

Similar Publications

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

On the geometric phase effects on time evolution of the density matrix during modulated radiofrequency pulses.

J Magn Reson

January 2025

Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA. Electronic address:

In this work the effect of the geometric phase on time evolution of the density matrix was evaluated during nonadiabatic radiofrequency (RF) pulses with Sine amplitude modulation (AM) and Cosine frequency modulation (FM) functions of the RAFF (Relaxations Along a Fictitious Field) family, and the polarization between two energy level ½ spin system coupled by dipolar interaction was evaluated during the application of RF irradiation. The dependencies of the diagonal density matrix elements and the polarization on the rotational correlation times and the time during RF pulses were evaluated. The general treatment of the density matrix elements along with the polarization generated during RF pulses was unavailable thus far, and for the first time was here derived for the nonadiabatic case of the RAFF pulses.

View Article and Find Full Text PDF

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

One key challenge in the study of nonadiabatic dynamics in open quantum systems is to balance computational efficiency and accuracy. Although Ehrenfest dynamics (ED) is computationally efficient and well-suited for large complex systems, ED often yields inaccurate results. To address these limitations, we improve the accuracy of the traditional ED by adding a random force (E + σ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!