This study was designed to characterize binding of a DNA aptamer to breast cancer cells and to test whether that aptamer could be used to kill target cells in vitro as part of an aptamer-C1q protein conjugate by coupling to the classic complement cascade. A biotinylated DNA aptamer designated MUC1-5TR-1 was shown to decorate the plasma membranes of human breast adenocarcinoma (MCF7) cells via fluorescence confocal microscopy. Biotinylated aptamer binding successfully initiated the classical complement pathway leading to complement fixation on the target cells via a streptavidin-C1q conjugate as previously reported. Förster Resonance Energy Transfer (FRET) measurements demonstrated membrane depolarization upon aptamer binding, providing indirect evidence of membrane attack complex (MAC) formation as a result of aptamer binding. Transmission electron microscopy (TEM) and immunogold labeling confirmed that aptamer-mediated complement fixation results in MAC formation on the plasma membrane, leading to osmotic swelling and cell death. This approach may provide a much less toxic and more precisely targeted "antibody-like" treatment for cancers by coupling to the patient's innate immune system in much the same way as more expensive humanized monoclonal antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426207PMC
http://dx.doi.org/10.1089/nat.2012.0355DOI Listing

Publication Analysis

Top Keywords

aptamer binding
12
cell death
8
membrane attack
8
dna aptamer
8
target cells
8
complement fixation
8
mac formation
8
aptamer
6
dynamics visualization
4
visualization mcf7
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!