Energetics of bond dissociation, especially the R-H bond heterolysis free energy (pK(a)), has played a central role in promoting chemistry to become a rational science. Despite the oceans of acidity studies in the literature, the current knowledge is limited to that in the classical molecular solvents and is unable to be extended to anticipate the acidity changes in ionic media. As the latter is now very popular for replacing volatile organic solvents, it becomes highly desirable to know how the driving force of bond cleavage is varied as the medium composition is switched from neutral molecules to the charged ions. Here we describe a general approach to measure absolute pK(a)'s in pure ionic liquid (IL). The standard conditions warranting accurate measurement were outlined. The pK(a)'s of the selected 18 C-H type indicator acids in four ILs were determined and a convenient indicator platform was constructed for easy expansion of acidity scales. These absolute pK(a)'s make possible, for the first time, direct comparisons of bond energies in IL with those in molecular solvent and in the gas phase and should be able to serve as the standard parameters for calibrating computational methods suitable for the studies in ionic media. The effect of cation and anion in IL in relation to structure was analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo300941g | DOI Listing |
Neurochem Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. Contrast agents that provide enhanced imaging performance are highly valuable in this field.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Department of Chemistry, Texas A&M University, 77842, College Station, UNITED STATES OF AMERICA.
Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
Background: Plasma and cerebrospinal (CSF) biomarkers are promising candidates for detecting neuropathology. While CSF biomarkers directly reflect pathophysiological processes within the central nervous system, their requirement for a lumbar puncture is a barrier to their widespread scalability in practice. Therefore, we examined cross-sectional associations of plasma biomarkers of amyloid (Aβ42/Aβ40 and pTau-181), neurodegeneration (Neurofilament Light, NfL), and neuroinflammation (Glial Fibrillary Acidic Protein, GFAP) with brain volume, cognition, and their corresponding CSF levels.
View Article and Find Full Text PDFBackground: Imaging and plasma markers are used as key indicators of disease for Alzheimer's disease (AD) but their usefulness in predicting regional tau pathology is relatively understudied. Our objective was to construct predictive models for regional tau pathology measured on postmortem brain tissue using multiple ante-mortem AD biomarkers. We focused on hippocampal and parietal regions that were immunostained with AT8 and 2E9 that reflect early and advanced aspects of tangle maturity, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!