Acidosis, a critical aspect of central nervous system (CNS) pathophysiology and a metabolic corollary of the hypoxic stem cell niche, could be an expedient trigger for hippocampal neurogenesis and brain repair. We recently tracked the function of our isoxazole stem cell-modulator small molecules (Isx) through a chemical biology-target discovery strategy to GPR68, a proton (pH) sensing G protein-coupled receptor with no known function in brain. Isx and GPR68 coregulated neuronal target genes such as Bex1 (brain-enriched X-linked protein-1) in hippocampal neural progenitors (HCN cells), which further amplified GPR68 signaling by producing metabolic acid in response to Isx. To evaluate this proneurogenic small molecule/proton signaling circuit in vivo, we explored GPR68 and BEX1 expression in brain and probed brain function with Isx. We localized proton-sensing GPR68 to radial processes of hippocampal type 1 neural stem cells (NSCs) and, conversely, localized BEX1 to neurons. At the transcriptome level, Isx demonstrated unrivaled proneurogenic activity in primary hippocampal NSC cultures. In vivo, Isx pharmacologically targeted type 1 NSCs, promoting neurogenesis in young mice, depleting the progenitor pool without adversely affecting hippocampal learning and memory function. After traumatic brain injury, cerebral cortical astrocytes abundantly expressed GPR68, suggesting an additional role for proton-GPCR signaling in reactive astrogliosis. Thus, probing a novel proneurogenic synthetic small molecule's mechanism-of-action, candidate target, and pharmacological activity, we identified a new GPR68 regulatory pathway for integrating neural stem and astroglial cell functions with brain pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400383PMC
http://dx.doi.org/10.1021/cn300025aDOI Listing

Publication Analysis

Top Keywords

hippocampal neurogenesis
8
neurogenesis brain
8
proneurogenic small
8
small molecules
8
proton sensing
8
sensing protein-coupled
8
neural stem
8
brain
7
gpr68
7
isx
6

Similar Publications

Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.

View Article and Find Full Text PDF

Effects of exercise and transient estradiol exposure in middle-aged female rats.

Horm Behav

January 2025

Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Houston Methodist Research Institute, Houston, TX 77030, United States.

The benefits of estrogen treatment on cognition in middle-aged and older women are dependent on many factors, including the timing of treatment. Moreover, the potential interactive effects with other lifestyle factors, such as exercise, are poorly understood. In this study, we tested for lasting benefits of independent and combined treatment with estrogen and voluntary exercise initiated in midlife, using a rat model of menopause.

View Article and Find Full Text PDF

Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination.

J Affect Disord

January 2025

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Background: ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility.

Methods: To model BD, ClockΔ19 mice were employed.

View Article and Find Full Text PDF

Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.

Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.

View Article and Find Full Text PDF

Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice.

EMBO Rep

January 2025

Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.

Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!