Signal transduction pathways activated by Toll-like Receptors and the IL-1 family of cytokines are fundamental to mounting an innate immune response and thus to clearing pathogens and promoting wound healing. Whilst mechanistic understanding of the regulation of innate signalling pathways has advanced considerably in recent years, there are still a number of critical controllers to be discovered. In order to characterise novel regulators of macrophage inflammation, we have carried out an extensive, cDNA-based forward genetic screen and identified 34 novel activators, based on their ability to induce the expression of cxcl2. Many are physiologically expressed in macrophages, although the majority of genes uncovered in our screen have not previously been linked to innate immunity. We show that expression of particular activators has profound but distinct impacts on LPS-induced inflammatory gene expression, including switch-type, amplifier and sensitiser behaviours. Furthermore, the novel genes identified here interact with the canonical inflammatory signalling network via specific mechanisms, as demonstrated by the use of dominant negative forms of IL1/TLR signalling mediators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409161PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042388PLOS

Publication Analysis

Top Keywords

identification novel
4
novel proinflammatory
4
proinflammatory proteins
4
proteins genome-wide
4
genome-wide macrophage
4
macrophage functional
4
functional screen
4
screen signal
4
signal transduction
4
transduction pathways
4

Similar Publications

Identifying the Molecular Signatures of Organic Matter Leached from Land-Applied Biosolids via 21 T FT-ICR Mass Spectrometry.

Environ Sci Technol

January 2025

National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.

Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.

View Article and Find Full Text PDF

The World Health Organization recommended the global elimination of industrial trans fats by 2023, leading to a decrease in their use in packaged foods. Nevertheless, a gap remains in the scientific literature regarding the ingredients adopted as substitutes by the food industry. This study aimed to map evidence on substitutes for industrial trans fats in packaged foods, discussing their possible designation in the ingredients lists.

View Article and Find Full Text PDF

Evolutionary Novelties in Bacteria and the Missing Backdrop of the Environment.

Environ Microbiol

January 2025

Trivedi School of BioSciences and Koita Centre for Digital Health, Ashoka University, Sonipat, India.

Evolutionary novelty has been one of the central themes in the field of evolutionary biology for many years. Structural and functional innovations such as scales in the reptiles, fins in the fishes and mammary glands in the mammals have been the focus of the studies. Insights obtained from these studies have shaped the criterion for the identification of novelty as well as provide the framework for studying novelty.

View Article and Find Full Text PDF

Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection.

View Article and Find Full Text PDF

Unlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!