Ixodes scapularis transmits the agent of human granulocytic anaplasmosis, among other pathogens. The mechanisms used by the tick to control Anaplasma phagocytophilum are not known. We demonstrate that the I. scapularis Janus kinase (JAK)-signaling transducer activator of transcription (STAT) pathway plays a critical role in A. phagocytophilum infection of ticks. The A. phagocytophilum burden increases in salivary glands and hemolymph when the JAK-STAT pathway is suppressed by RNA interference. The JAK-STAT pathway exerts its anti-Anaplasma activity presumably through STAT-regulated effectors. A salivary gland gene family encoding 5.3-kDa antimicrobial peptides is highly induced upon A. phagocytophilum infection of tick salivary glands. Gene expression and electrophoretic mobility shift assays showed that the 5.3-kDa antimicrobial peptide-encoding genes are regulated by tick STAT. Silencing of these genes increased A. phagocytophilum infection of tick salivary glands and transmission to mammalian host. These data suggest that the JAK-STAT signaling pathway plays a key role in controlling A. phagocytophilum infection in ticks by regulating the expression of antimicrobial peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448968PMC
http://dx.doi.org/10.1093/infdis/jis484DOI Listing

Publication Analysis

Top Keywords

phagocytophilum infection
16
jak-stat pathway
12
antimicrobial peptides
12
salivary glands
12
ixodes scapularis
8
agent human
8
human granulocytic
8
granulocytic anaplasmosis
8
pathway plays
8
infection ticks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!