Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system.

Appl Opt

University of Dayton, Electro-Optics Program, 300 College Park, Dayton, Ohio 45469-2951, USA.

Published: August 2012

Holographic aperture ladar (HAL) is a variant of synthetic aperture ladar (SAL). The two processes are related in that they both seek to increase cross-range (i.e., the direction of the receiver translation) image resolution through the synthesis of a large effective aperture. This is in turn achieved via the translation of a receiver aperture and the subsequent coherent phasing and correlation of multiple received signals. However, while SAL imaging incorporates a translating point detector, HAL takes advantage of a two-dimensional translating sensor array. For the research presented in this article, a side-looking stripmap HAL geometry was used to sequentially image a set of Ronchi ruling targets. Prior to this, theoretical calculations were performed to determine the baseline, single subaperture resolution of our experimental, laboratory-based system. Theoretical calculations were also performed to determine the ideal modulation transfer function (MTF) and expected cross-range HAL image sharpening ratio corresponding to the geometry of our apparatus. To verify our expectations, we first sequentially captured an oversampled collection of pupil plane field segments for each Ronchi ruling. A HAL processing algorithm incorporating a high-precision speckle field registration process was then employed to phase-correct and reposition the field segments. Relative interframe piston phase errors were also removed prior to final synthetic image formation. By then taking the Fourier transform of the synthetic image intensity and examining the fundamental spatial frequency content, we were able to produce experimental modulation transfer function curves, which we then compared with our theoretical expectations. Our results show that we are able to achieve nearly diffraction-limited results for image sharpening ratios as high as 6.43.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.005531DOI Listing

Publication Analysis

Top Keywords

aperture ladar
12
holographic aperture
8
ronchi ruling
8
theoretical calculations
8
calculations performed
8
performed determine
8
modulation transfer
8
transfer function
8
image sharpening
8
field segments
8

Similar Publications

According to the principle of synthetic aperture ladar, high-resolution imaging can be achieved if the relative motion exists between the target and the ladar. The imaging system has characteristics including a large field of view, narrow-band laser signals applied, and easy engineering implementation. The complex image reconstruction and the synthetic aperture laser imaging method for moving targets based on the spatial light modulator and the direct-detection detector array are proposed.

View Article and Find Full Text PDF

Synthetic aperture Ladar (SAL) is an extension of synthetic aperture technology in the optical frequency band. Owing to the short wavelength of lasers, the system has high-resolution, high-data-rate, and refined imaging capabilities, which has potential in high-resolution observation fields such as ground observation and space target observation. However, the short wavelength of lasers also makes SAL severely sensitive to vibrations even on the micron order which cause azimuth defocusing and range cell migration.

View Article and Find Full Text PDF

Inverse synthetic aperture ladar (ISAL) has the capability to achieve high-resolution imaging of long-distance targets in a short time because of the laser's short wavelength. However, the unexpected phases introduced by target vibration in the echo can cause defocused imaging results of the ISAL. How to estimate the vibration phases has always been one of the difficulties in ISAL imaging.

View Article and Find Full Text PDF

A dual-channel inverse synthetic aperture ladar imaging experimental system based on wide-pulse binary phase coded signals and its moving target imaging are introduced. The analysis, simulation, and experimental data processing results of binary phase coded signal Doppler compensation and pulse compression are included. The method of motion phase error estimation based on interferometric processing and the imaging method with small computation in the case of large squint angles are proposed, and the simulation results are presented.

View Article and Find Full Text PDF

We present an optical ranging and super-resolution object localization method, monopulse ladar, used to determine the angle of a point target in two dimensions to a few percent of an optical beam width from differential measurements of four just-resolved waveform-encoded beams while simultaneously providing target range via either coherent or incoherent coded waveform correlation. A common optical carrier is shifted by four GHz-scale tones, each modulated with distinct ranging waveforms, which when transmitted from a Si-photonic 2D wavelength-steered serpentine optical phased array (SOPA) aperture form an encoded rectangular beam cluster that propagates to and scatters from a distant point target. Superposed backscattered target returns from each beam are decoded by correlation with reference waveforms at the receiver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!