3-Phenylcoumarins as inhibitors of HIV-1 replication.

Molecules

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS-IBSAL, 37007 Salamanca, Spain.

Published: August 2012

We have synthesized fourteen 3-phenylcoumarin derivatives and evaluated their anti-HIV activity. Antiviral activity was assessed on MT-2 cells infected with viral clones carrying the luciferase gene as reporter. Inhibition of HIV transcription and Tat function were tested on cells stably transfected with the HIV-LTR and Tat protein. Six compounds displayed NF-κB inhibition, four resulted Tat antagonists and three of them showed both activities. Three compounds inhibited HIV replication with IC₅₀ values < 25 µM. The antiviral effect of the 4-hydroxycoumarin derivative 19 correlates with its specific inhibition of Tat functions, while compound 8, 3-(2-chlorophenyl)coumarin, seems to act through a mechanism unrelated to the molecular targets considered in this research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268528PMC
http://dx.doi.org/10.3390/molecules17089245DOI Listing

Publication Analysis

Top Keywords

inhibition tat
8
3-phenylcoumarins inhibitors
4
inhibitors hiv-1
4
hiv-1 replication
4
replication synthesized
4
synthesized fourteen
4
fourteen 3-phenylcoumarin
4
3-phenylcoumarin derivatives
4
derivatives evaluated
4
evaluated anti-hiv
4

Similar Publications

Ca3.3 T-type Calcium Channels Contribute to Carboplatin Resistance in Retinoblastoma.

J Biol Chem

January 2025

Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Carboplatin resistance in retinoblastoma, an aggressive pediatric intraocular tumor, remains a major clinical challenge in treatment. This study elucidates the role of T-type calcium channels in carboplatin resistance using human retinoblastoma Y79 cells. We generated carboplatin-resistant Y79 (Y79CR) cells and characterized their electrophysiological properties.

View Article and Find Full Text PDF

A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops.

Mol Pharm

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.

Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.

Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!