Cardiovascular diseases such as hypertension are associated with a generalized skeletal myopathy including a proapoptotic phenotype. Current evidence suggests that exercise may alter apoptosis-related signaling in skeletal muscle; however, the effect of exercise on skeletal muscle DNA fragmentation and apoptotic signaling is unclear in hypertensive animals. Male normotensive Wistar Kyoto (WKY; n = 24) and spontaneously hypertensive rats (SHR; n = 24) were assigned to a sedentary (SED) condition or exercise (EX) consisting of progressive treadmill running 5 days/wk for 6 wks. Consistent with our previous work we found that soleus muscle of hypertensive animals had significantly higher DNA fragmentation (a hallmark of apoptosis), elevated proapoptotic factors (Bax, caspase-3 activity), and lower antiapoptotic proteins (apoptosis repressor with caspase recruitment domain, Bcl-2, X-linked inhibitor of apoptosis protein) compared with normotensive rats. In addition, soleus muscle of hypertensive animals displayed myosin accumulation and fragmentation, had elevated cytosolic cytochrome c, second mitochondrial-derived activator of caspase (Smac), apoptosis inducing factor (AIF), and endonuclease G protein levels, higher nuclear AIF content, and greater muscle reactive oxygen species generation compared with normotensive animals. Interestingly, exercise training significantly lowered DNA fragmentation and myosin accumulation/fragmentation in soleus muscle of hypertensive rats. Furthermore, exercise training significantly reduced cytosolic levels of cytochrome c as well as cytosolic and nuclear AIF in soleus muscle of hypertensive animals. This beneficial response is likely due to exercise-mediated elevations in Bcl-2, heat shock protein 70, and manganese superoxide dismutase protein content, as well as reductions in Bax protein levels and the Bax-to-Bcl-2 ratio. These results suggest that regular exercise training provides protection against skeletal muscle apoptosis by altering a number of apoptosis regulatory proteins and by influencing mitochondrial-mediated apoptotic signaling mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00290.2012DOI Listing

Publication Analysis

Top Keywords

soleus muscle
20
muscle hypertensive
20
dna fragmentation
16
hypertensive animals
16
apoptotic signaling
12
hypertensive rats
12
skeletal muscle
12
exercise training
12
muscle
9
fragmentation apoptotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!