A study was conducted to assess the diagnostic sensitivity and specificity of a disease surveillance method for diagnosis of highly pathogenic avian influenza (HPAI) outbreaks in household chicken flocks used by participatory disease surveillance (PDS) teams in Yogyakarta Province, Indonesia. The Government of Indonesia, in partnership with the Food and Agriculture Organization of the United Nations, has implemented a PDS method for the detection of HPAI outbreaks in poultry since 2006. The PDS method in Indonesia utilizes both a clinical case definition (CD) and the result of a commercial rapid antigen test kit Yogyakarta 55611, to diagnose HPAI outbreaks, primarily in backyard chicken flocks. The following diagnostic sensitivities and specificities were obtained relative to real-time reverse transcription-PCR as the gold standard diagnostic test: 1) 89% sensitivity (CI95: 75%-97%) and 96% specificity (CI95: 89%-99%) for the PDS CD alone; 2) 86% sensitivity (CI95: 71%-95%) and 99% specificity (CI95: 94%-100%) for the rapid antigen test alone; and 3) 84% sensitivity (CI95: 68%-94%) and 100% specificity (CI95: 96%-100%) for the PDS CD result combined with the rapid antigen test result. Based on these results, HPAI outbreaks in extensively raised household chickens can be diagnosed with sufficient sensitivity and specificity using the PDS method as implemented in Indonesia. Subject to further field evaluation, data from this study suggest that the diagnostic sensitivity of the PDS method may be improved by expanding the PDS CD to include more possible clinical presentations of HPAI and by increasing the number of rapid antigen tests to three different birds with HPAI-compatible signs of same flock.

Download full-text PDF

Source
http://dx.doi.org/10.1637/9936-091511-Reg.1DOI Listing

Publication Analysis

Top Keywords

hpai outbreaks
16
pds method
16
rapid antigen
16
diagnostic sensitivity
12
sensitivity specificity
12
disease surveillance
12
chicken flocks
12
antigen test
12
sensitivity ci95
12
specificity ci95
12

Similar Publications

Highly pathogenic avian influenza (HPAI) epizootics have caused repeated mass mortality events among wild birds. The effect of the infection is potentially detrimental for a variety of bird species, including the Peregrine Falcon (). The numbers of wintering and breeding Peregrine Falcons in the Netherlands have recently declined.

View Article and Find Full Text PDF

In 2022, an outbreak of H5N1 highly pathogenic avian influenza (HPAI) killed 60% of the largest breeding colony of Dalmatian pelicans (DPs) in the world at Mikri Prespa Lake (Greece), prompting a multidisciplinary study on HPAI and other pathogens. This study determines the antimicrobial resistance rates of cloacal enterococci and in DPs. Fifty-two blood and cloacal swab samples were collected from 31 nestlings (20 DP/11 great white pelicans) hatched after the H5N1 outbreak at the Prespa colony and 21 subadult/adult DPs captured at a spring migration stopover.

View Article and Find Full Text PDF

Receptor binding, structure, and tissue tropism of cattle-infecting H5N1 avian influenza virus hemagglutinin.

Cell

January 2025

Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:

The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.

View Article and Find Full Text PDF

All European Union (EU) Member States (MSs), along with Iceland, Norway, Switzerland and the United Kingdom (Northern Ireland), conduct surveillance for avian influenza (AI) in poultry and wild birds. EFSA, upon mandate of the European Commission, compiles and analyses this data in an annual report. This summary highlights findings from the 2023 surveillance activities.

View Article and Find Full Text PDF

Avian influenza virus (AIV) remains a significant global threat, with periodic reemergence in Iraq. This study marks the first molecular characterization of the highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!