Wing morphology correlates with flight performance and ecology among adult birds, yet the impact of wing development on aerodynamic capacity is not well understood. Recent work using chukar partridge (Alectoris chukar), a precocial flier, indicates that peak coefficients of lift and drag (C(L) and C(D)) and lift-to-drag ratio (C(L):C(D)) increase throughout ontogeny and that these patterns correspond with changes in feather microstructure. To begin to place these results in a comparative context that includes variation in life-history strategy, we used a propeller and force-plate model to study aerodynamic force production across a developmental series of the altricial-flying mallard (Anas platyrhynchos). We observed the same trend in mallards as reported for chukar in that coefficients of vertical (C(V)) and horizontal force (C(H)) and C(V):C(H) ratio increased with age, and that measures of gross-wing morphology (aspect ratio, camber and porosity) in mallards did not account for intraspecific trends in force production. Rather, feather microstructure (feather unfurling, rachis width, feather asymmetry and barbule overlap) all were positively correlated with peak C(V):C(H). Throughout ontogeny, mallard primary feathers became stiffer and less transmissive to air at both macroscale (between individual feathers) and microscale (between barbs/barbules/barbicels) levels. Differences between species were manifest primarily as heterochrony of aerodynamic force development. Chukar wings generated measurable aerodynamic forces early (<8 days), and improved gradually throughout a 100 day ontogenetic period. Mallard wings exhibited delayed aerodynamic force production until just prior to fledging (day 60), and showed dramatic improvement within a condensed 2-week period. These differences in timing may be related to mechanisms of escape used by juveniles, with mallards swimming to safety and chukar flap-running up slopes to take refuge. Future comparative work should test whether the need for early onset of aerodynamic force production in the chukar, compared with delayed, but rapid, change in the mallard wing, leads to a limited repertoire of flight behavior in adult chukar compared with mallards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.062018 | DOI Listing |
Microsc Res Tech
December 2024
Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt.
This study aimed to describe the morphological features and microstructure of the upper, lower, and third eyelids of the black-winged kite, Elanus caeruleus, and to characterize the organized lymphoid follicles and lymphocytes in the eyelid mucosa. Additionally, it aimed to illustrate the importance of the eye adnexa in the eye's immune protection. The upper, lower, and third eyelids display varying morphological differences that seem to be closely linked to the birds' way of life, indicating adjustments to their environment and eating behaviors.
View Article and Find Full Text PDFRecently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.
View Article and Find Full Text PDFSci Adv
November 2024
Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA.
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance.
View Article and Find Full Text PDFJ Prosthet Dent
November 2024
Professor, Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China. Electronic address:
Statement Of Problem: The machining accuracy and marginal integrity of monolithic zirconia crowns with minimal invasive preparations may impact the long-term survival rate of tooth and periodontal health, but studies on the effect of machining method are lacking.
Purpose: The purpose of this in vitro study was to digitally evaluate the machining accuracy and margin quality of monolithic zirconia crowns fabricated using gel deposition and conventional soft milling processes by comparing 2 different margin types.
Material And Methods: A total of 40 monolithic zirconia crowns were produced using gel deposition (Self-glazed Zirconia Group, SGG, n=20) and soft milling (Milled Zirconia Group, MG, n=20).
Nat Commun
October 2024
State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.
Avian feather intricate adaptable architecture to wing deformations has catalyzed interest in feathered flapping-wing aircraft with high maneuverability, agility, and stealth. Yet, to mimic avian integrated somatic sensation within stringent weight constraints, remains challenging. Here, we propose an avian-inspired embodied perception approach for biohybrid flapping-wing robots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!