Reconstitution, spectroscopy, and redox properties of the photosynthetic recombinant cytochrome b(559) from higher plants.

Photosynth Res

Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Carretera Montañana 1005, 50059 Zaragoza, Spain.

Published: September 2012

A study of the in vitro reconstitution of sugar beet cytochrome b(559) of the photosystem II is described. Both α and β cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ββ) homodimers and (αβ) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b(559) form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36 mV, similar to that from the native purified cytochrome b(559). Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b(559) subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the β subunit from the cyanobacterium the formation of a cytochrome b(559)-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ββ) homodimer cytochrome b(559)-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b(559). A higher midpoint redox potential (+126 mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-012-9772-3DOI Listing

Publication Analysis

Top Keywords

cytochrome b559
24
cytochrome
11
b559 higher
8
vitro reconstitution
8
sugar beet
8
electron paramagnetic
8
paramagnetic resonance
8
midpoint redox
8
redox potential
8
native purified
8

Similar Publications

The cytochrome b559 heterodimer is a conserved component of photosystem II whose physiological role in photosynthetic electron transfer is enigmatic. A particularly puzzling aspect of cytochrome b559 has been its presence in etiolated seedlings, where photosystem II is absent. Whether or not the cytochrome has a specific function in etioplasts is unknown.

View Article and Find Full Text PDF

RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis.

Plant Cell

October 2024

Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.

As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae.

View Article and Find Full Text PDF

Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii.

Nat Commun

June 2024

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive.

View Article and Find Full Text PDF

The synchronicity of bloom-forming cyanobacteria transcription patterns and hydrogen peroxide dynamics.

Environ Pollut

May 2024

School of Geosciences, University of South Florida, Tampa, FL, 33620, USA; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA. Electronic address:

Hydrogen peroxide is a reactive oxygen species (ROS) naturally occurring at low levels in aquatic environments and production varies widely across different ecosystems. Oxygenic photosynthesis generates hydrogen peroxide as a byproduct, of which some portion can be released to ambient water. However, few studies have examined hydrogen peroxide dynamics in relation to cyanobacterial harmful algal blooms (cHABs).

View Article and Find Full Text PDF

Structure of native photosystem II assembly intermediate from .

Front Plant Sci

January 2024

The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel.

Photosystem II (PSII) is a dimer consisting of at least 13 nuclear-encoded and four chloroplast-encoded protein subunits that collectively function as a sunlight-driven oxidoreductase. In this study, we present the inaugural structure of a green alga PSII assembly intermediate (pre-PSII-int). This intermediate was isolated from chloroplast membranes of the temperature-sensitive mutant TSP4, cultivated for 14 hours at a non-permissive temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!