Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells.

J Physiol

W. P. Schilling: Rammelkamp Center, Rm R-322, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.

Published: August 2012

AI Article Synopsis

Article Abstract

In non-excitable cells, thiol-oxidizing agents have been shown to evoke oscillations in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) by increasing the sensitivity of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) to IP(3). Although thiol modification of the IP(3)R is implicated in this response, the molecular nature of the modification(s) responsible for changes in channel activity is still not well understood. Diamide is a chemical oxidant that selectively converts reduced glutathione (GSH) to its disulfide (GSSG) and promotes the formation of protein–glutathione (P-SSG) mixed disulfide, i.e. glutathionylation. In the present study, we examined the effect of diamide, and the model oxidant hydrogen peroxide (H(2)O(2)), on oscillations in [Ca(2+)](i) in fura-2-loaded bovine (BAECs) and human (HAECs) aortic endo-thelial cells using time-lapse fluorescence video microscopy. In the absence of extracellular Ca(2+), acute treatment with either diamide or H(2)O(2) increased the number of BAECs exhibiting asynchronous Ca(2+) oscillations, whereas HAECs were unexpectedly resistant. Diamide pretreatment increased the sensitivity of HAECs to histamine-stimulated Ca(2+) oscillations and BAECs to bradykinin-stimulated Ca(2+) oscillations. Moreover, in both HAECs and BAECs, diamide dramatically increased both the rate and magnitude of the thapsigargin-induced Ca(2+) transient suggesting that Ca(2+)-induced Ca(2+) release (CICR) via the IP(3)R is enhanced by glutathionylation. Similar to diamide, H(2)O(2) increased the sensitivity of HAECs to both histamine and thapsigargin. Lastly, biochemical studies showed that glutathionylation of native IP(3)R(1) is increased in cells challenged with H(2)O(2). Collectively our results reveal that thiol-oxidizing agents primarily increase the sensitivity of the IP(3)R to Ca(2+), i.e. enhanced CICR, and suggest that glutathionylation may represent a fundamental mechanism for regulating IP(3)R activity during physiological redox signalling and during pathologicalical oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547261PMC
http://dx.doi.org/10.1113/jphysiol.2012.232645DOI Listing

Publication Analysis

Top Keywords

ca2+ oscillations
12
ca2+
9
ca2+-induced ca2+
8
ca2+ release
8
ip3 receptor
8
thiol-oxidizing agents
8
diamide h2o2
8
h2o2 increased
8
oscillations haecs
8
increased sensitivity
8

Similar Publications

Exercise-induced cytosolic calcium oscillations: mechanisms and modulation of T-cell function.

Biochem Biophys Res Commun

January 2025

School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China. Electronic address:

This study investigated time-dependent changes in intracellular Ca⁺ levels in T cells, regulatory mechanisms, and functional effects after acute exercise. Male C57BL/6 mice were assigned to control and exercise groups, with the latter sacrificed at different intervals post-exercise. Murine splenic lymphocytes were isolated, and cytosolic Ca⁺ levels were measured using Fluo-3/AM.

View Article and Find Full Text PDF

We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.

View Article and Find Full Text PDF

Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!