The scintillation index of a Gaussian Schell-model beam with twist phase (i.e., twisted GSM beam) in weak turbulent atmosphere is formulated with the help of a tensor method. Variations of the scintillation index of a twisted GSM beam on propagation in turbulent atmosphere are studied in detail. It is interesting to find that the scintillation index of a twisted GSM beam can be smaller than that without twist phase in weak turbulent atmosphere. Thus, modulation of the twist phase of a partially coherent beam provides a new way to reduce turbulence-induced scintillation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.000184DOI Listing

Publication Analysis

Top Keywords

turbulent atmosphere
16
twist phase
12
twisted gsm
12
gsm beam
12
partially coherent
8
coherent beam
8
weak turbulent
8
scintillation twisted
8
beam
6
scintillation
5

Similar Publications

Enhanced Neural Architecture for Real-Time Deep Learning Wavefront Sensing.

Sensors (Basel)

January 2025

Free-Space Optical Communication Technology Research Center, Harbin Institute of Technology, Harbin 150001, China.

To achieve real-time deep learning wavefront sensing (DLWFS) of dynamic random wavefront distortions induced by atmospheric turbulence, this study proposes an enhanced wavefront sensing neural network (WFSNet) based on convolutional neural networks (CNN). We introduce a novel multi-objective neural architecture search (MNAS) method designed to attain Pareto optimality in terms of error and floating-point operations (FLOPs) for the WFSNet. Utilizing EfficientNet-B0 prototypes, we propose a WFSNet with enhanced neural architecture which significantly reduces computational costs by 80% while improving wavefront sensing accuracy by 22%.

View Article and Find Full Text PDF

Adaptive optics (AO) systems are capable of correcting wavefront aberrations caused by transmission media or defects in optical systems. The deformable mirror (DM) plays a crucial role as a component of the adaptive optics system. In this study, our focus is on analyzing the ability of a 97-element MEMS (Micro-Electro-Mechanical System) DM to correct blurred images of extended sources affected by atmospheric turbulence.

View Article and Find Full Text PDF

Brown carbon (BrC) has been recognized as an important light-absorbing carbonaceous aerosol, yet understanding of its influence on regional climate and air quality has been lacking, mainly due to the ignorance of regional coupled meteorology-chemistry models. Besides, assumptions about its emissions in previous explorations might cause large uncertainties in estimates. Here, we implemented a BrC module into the WRF-Chem model that considers source-dependent absorption and avoids uncertainties caused by assumptions about emission intensities.

View Article and Find Full Text PDF

The eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.

View Article and Find Full Text PDF

Quantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!