The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains challenging. Here we investigate the limits of the WLC model using coarse-grained Monte Carlo simulations to model the supercoiling of linear DNA molecules under tension. At a critical supercoiling density, the DNA extension decreases abruptly due to the sudden formation of a plectonemic structure. This buckling transition is caused by the large energy required to form the tightly bent end-loop of the plectoneme and should therefore provide a sensitive benchmark for model evaluation. Although simulations based on the WLC energetics could quantitatively reproduce the buckling measured in magnetic tweezers experiments, the buckling almost disappears for the tested linear subelastic chain model. Thus, our data support the validity of a harmonic bending potential even for small bending radii down to 3.5 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400772 | PMC |
http://dx.doi.org/10.1016/j.bpj.2012.05.050 | DOI Listing |
Space Sci Rev
January 2025
Faculty of Mathematics and Physics, Department of Geophysics, Charles University, V Holesšovičkách 2, Praha, Praha 8 180 00 Czech Republic.
Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Bioengineering and QB3, University of California, Berkeley, Berkeley, CA, 94720, USA.
Biological age estimation from DNA methylation and determination of relevant biomarkers is an active research problem which has predominantly been tackled with black-box penalized regression. Machine learning is used to select a small subset of features from hundreds of thousands of CpG probes and to increase generalizability typically lacking with ordinary least-squares regression. Here, we show that such feature selection lacks biological interpretability and relevance in the clocks of the first and next generations and clarify the logic by which these clocks systematically exclude biomarkers of aging and age-related disease.
View Article and Find Full Text PDFSci Rep
January 2025
Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Yunnan, 650106, China.
This study aimed to develop in vivo methods for assessing facial anti-glycation and anti-aging effects and to investigate the link between glycation and aging signs. We utilized an AGE reader to measure AGEs levels on the face and arms, establishing a correlation to validate the reader's use for facial AGEs detection. Then the product's 7-day anti-glycation effect was evaluated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA.
Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.
Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!