The C2A domain is one of two calcium ion (Ca(2+))- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca(2+) sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca(2+) and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globally fitting differential scanning calorimetry and fluorescence lifetime spectroscopy denaturation data, and found that C2A is weakly stable. Additionally, using partition functions in a fluorescence resonance energy transfer approach, we found that the Ca(2+)- and membrane-binding sites of C2A exhibit weak cooperative linkage. Lastly, a dye-release assay revealed that the Ca(2+)- and membrane-bound conformer subset of C2A promote membrane disruption. We discuss how these phenomena may lead to both cooperative and functional responses of Syt I.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400769 | PMC |
http://dx.doi.org/10.1016/j.bpj.2012.05.051 | DOI Listing |
Mov Disord
January 2025
Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Objective: Pathogenic variants in B-cell receptor-associated protein (BCAP31) are associated with X-linked, deafness, dystonia and cerebral hypomyelination (DDCH) syndrome. DDCH is congenital and non-progressive, featuring severe intellectual disability (ID), variable dysmorphism, and sometimes associated with shortened survival. BCAP31 encodes one of the most abundant chaperones, with several functions including acting as a negative regulator of endoplasmic reticulum (ER) calcium ion (Ca) concentration.
View Article and Find Full Text PDFChem Mater
January 2025
Department of Materials Science and Engineering, University of California, Berkeley, California 94704, United States.
Multivalent-ion batteries offer an alternative to Li-based technologies, with the potential for greater sustainability, improved safety, and higher energy density, primarily due to their rechargeable system featuring a passivating metal anode. Although a system based on the Ca/Ca couple is particularly attractive given the low electrochemical plating potential of Ca, the remaining challenge for a viable rechargeable Ca battery is to identify Ca cathodes with fast ion transport. In this work, a high-throughput computational pipeline is adapted to (1) discover novel Ca cathodes in a largely unexplored space of "empty intercalation hosts" and (2) develop material design rules for Ca-ion mobility.
View Article and Find Full Text PDFACS Omega
January 2025
School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004, China.
In the process of zinc hydrometallurgy, the content of fluorine in zinc sulfate solution directly affects the stripping of the zinc plate, which easily leads to the deterioration of working conditions. It not only has a serious impact on the entire zinc hydrometallurgical system but also causes huge economic losses. Especially in the process of zinc secondary resource utilization, the concentration of fluoride ions in the electrolyte exceeds the control standard of smelting enterprises, which has become a long-term technical challenge in the smelting industry.
View Article and Find Full Text PDFACS Omega
January 2025
School of Petroleum Engineering, Xi 'an Shiyou University, No. 18, East Section of Electronic second Road, Yanta District, Xi'an, Shaanxi 710054, China.
This study examined the effects of salt content and salt type on the properties of the hydroxypropyl guar gum fracturing fluid. In this study, we conducted a thorough analysis of the impact that various ions in seawater have on the performance of fracturing fluids. We identified the cross-linked polymer that performs optimally at a specific concentration of the binding agent.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China.
The multiple enzymatic properties of the Au-modified metal-organic framework (Au-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO NPs) were used to construct a nanozyme (Au-MOF/CaO/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!