Base-stacking disorder and excited-state dynamics in single-stranded adenine homo-oligonucleotides.

J Phys Chem B

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States.

Published: August 2012

Single-stranded adenine homo-oligonucleotides were investigated in aqueous solution by femtosecond transient absorption spectroscopy in order to study the effect of strand length on the nature and dynamics of excited states formed by UV absorption. Global fitting analysis of bleach recovery signals recorded at a probe wavelength of 250 nm and pH 7 reveals that the same lifetimes of 2.72 and 183 ps reproduce the pronounced biexponential decays observed in all (dA)n oligomers, containing between 2 and 18 residues. Although the lifetimes are invariant, the amplitudes of the short- and long-lived components depend sensitively on the number of residues. For example, the 183 ps component increases with strand length and is greater for DNA vs RNA single strands with the same number of adenines. Inhomogeneous kinetics arising from two classes of adenine bases in each oligomer best explains the observations. A subset of adenine residues produce short-lived excited states upon excitation, while absorption by the remaining adenines yields long-lived excited states that are responsible for the long-lived signal. By assuming that each short-lived excited state in the oligomer makes the same contribution to the transient absorption signal as an excited state of the adenine mononucleotide, the fraction of each type of base in the oligomer can be estimated along with the quantum yield of long-lived excited states. The fraction of oligonucleotides that yield long-lived excited states increases with oligomer length in precisely the same manner as the fraction of bases that are found in base stacks. Corroborating evidence that base stacking leads to distinct decay channels comes from experiments conducted at low pH on (dA)2. Coulombic repulsion between the two protonated bases at pH 2 results in open, unstacked conformations causing the long-lived component seen in (dA)2 at neutral pH to vanish completely. The fast component seen in oligomers with two or more bases is assigned to vibrational cooling following ultrafast internal conversion to the electronic ground state. This monomer-like decay channel is operative for the subset of adenine residues that are either poorly or not at all stacked with neighboring bases. This study shows that static base stacking disorder fully accounts for the length-dependent transient absorption signals. Although absorption likely creates delocalized excitons of unknown spatial extent, the results from this study suggest that long-lived excitations in single-stranded A tracts are already fully localized on no more than two bases no later than 1 ps after UV excitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp305350tDOI Listing

Publication Analysis

Top Keywords

excited states
20
transient absorption
12
long-lived excited
12
single-stranded adenine
8
adenine homo-oligonucleotides
8
strand length
8
subset adenine
8
adenine residues
8
short-lived excited
8
excited state
8

Similar Publications

The charge state of a quantum point defect in a solid-state host strongly determines its optical and spin characteristics. Consequently, techniques for controlling the charge state are required to realize technologies for quantum networking and sensing. In this work, we demonstrate the use of deep-ultraviolet (DUV) radiation to dynamically neutralize nitrogen- (NV) and silicon-vacancy (SiV) centers.

View Article and Find Full Text PDF

Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations.

View Article and Find Full Text PDF

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.

View Article and Find Full Text PDF

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!