We study graphene nanoribbon (GNR) interconnects obtained from graphene grown by chemical vapor deposition (CVD). We report low- and high-field electrical measurements over a wide temperature range, from 1.7 to 900 K. Room temperature mobilities range from 100 to 500 cm(2)·V(-1)·s(-1), comparable to GNRs from exfoliated graphene, suggesting that bulk defects or grain boundaries play little role in devices smaller than the CVD graphene crystallite size. At high-field, peak current densities are limited by Joule heating, but a small amount of thermal engineering allows us to reach ∼2 × 10(9) A/cm(2), the highest reported for nanoscale CVD graphene interconnects. At temperatures below ∼5 K, short GNRs act as quantum dots with dimensions comparable to their lengths, highlighting the role of metal contacts in limiting transport. Our study illustrates opportunities for CVD-grown GNRs, while revealing variability and contacts as remaining future challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl300584r | DOI Listing |
Int J Mol Sci
November 2024
School of Engineering and Design, Atlantic Technological University, Ash Lane, F91 YW50 Sligo, Ireland.
Water shortages and pharmaceutical pollution are two interconnected crises that pose severe threats to global health, environmental sustainability, and economic stability. Pharmaceutical pollution is widespread and has reached potentially toxic levels in over 258 rivers in 104 countries. So far, more interest has been paid towards efficient water treatment processes in recent years.
View Article and Find Full Text PDFMolecules
November 2024
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China.
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple one-step laser engraving method is applied for preparing laser-induced graphene (LIG) on polyimide (PI) film, which serves as the sensor substrate.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, University of Mississippi School of Engineering, University, Mississippi 38677, United States.
A cutting-edge method that uses electromagnetic (EM) energy for the melt processing of thermoplastic polymer nanocomposites (TPNCs) is reported. The properties and microstructures of TPNCs produced via the proposed EM-processing method and TPNCs via conventional heat processing are contrasted. The EM-processed TPNCs prepared with EM-susceptible carbon nanotubes (CNTs) exhibited a significant enhancement in transport and mechanical properties, outperforming the conventionally processed TPNCs.
View Article and Find Full Text PDFNanophotonics
September 2024
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
Silicon photonics with the advantages of low power consumption and low fabrication cost is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the SiGe photodetectors, supporting high-speed photodetection in wavelength bands beyond 1.6 μm on silicon.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address:
Both nanocellulose and graphene nanosheets serve as exceptional fillers for biopolymers. However, there are limited materials that effectively combine the properties of these two fillers in Poly (propylene carbonate) (PPC) to enhance their overall properties. This study presents a meticulous approach to producing graphitized nanocellulose (GCNC) with tailored rod-like (R-GCNC) and spheres-like (S-GCNC) under low-temperature and ambient-pressure conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!