We demonstrate the synthesis of a transparent, polymeric n-type material (M1) consisting of C60 pendant and UV curable groups in side chains. This material (M1) is employed as a polymeric n-type interfacial buffer layer for an efficient inverted bulk heterojunction (BHJ) photovoltaic device based on regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PC61BM) active layer. Under simulated solar illumination of AM 1.5G (100 mW/cm2), the highest efficient devices fabricated with a configuration of ITO/interfacial buffer layer (M1,10 nm)/P3HT:PC61BM (1:0.9 w:w) (120 nm)/PEDOT:PSS (30 nm)/Ag (100 nm) achieve an average power conversion efficiency PCE of 2.16%, with short-circuit current J(SC) = 6.70 mA/cm2, fill factor FF = 54.2%, and open-circuit voltage V(OC) = 0.60 V. This result is comparable to the inverted BHJ photovoltaic devices fabricated with Cs2CO3, one of widely used as a buffer layer. The synthesized M1 have thus proven to be promising polymeric interfacial buffer layer for high efficient BHJ photovoltaic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.5900DOI Listing

Publication Analysis

Top Keywords

buffer layer
20
photovoltaic devices
12
interfacial buffer
12
bhj photovoltaic
12
efficient inverted
8
inverted bulk
8
bulk heterojunction
8
transparent polymeric
8
polymeric interfacial
8
c60 pendant
8

Similar Publications

Controlling the nucleation, growth, and dissolution of Li is crucial for the high cycling stability in rechargeable Li metal batteries. The overpotential for Li nucleation (η) on Li alloys such as Li-Au is generally lower than that on metal current collectors (CCs) with very limited Li solubility like Cu. However, the alloying process of CC and its impact on the Li nucleation kinetics remain unclear.

View Article and Find Full Text PDF

Degradation behavior of austenite, ferrite, and martensite present in biodegradable Fe-based alloys in three protein-rich pseudo-physiological solutions.

Bioact Mater

November 2024

Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Canada.

This study investigates the degradation behavior of three distinct Fe-based alloys immersed in three pseudo-physiological solutions. These alloys, which have varied Mn and C contents, include a commercially available Fe-0.15C alloy, namely Fe-C, and two newly developed alloys, that is Fe-5Mn-0.

View Article and Find Full Text PDF

An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine.

Biosens Bioelectron

December 2024

Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:

Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.

View Article and Find Full Text PDF

Very high heat is generated during the polymerization of poly (methyl methacrylate) (PMMA) bone cement, which is used for implant fixation in orthopedic surgery. As such, it has been suggested that irrigating the bone cement layer in the surgical site with a saline solution is a way of cooling the layer. In this study, we aimed to determine the influence of irrigation with a saline solution on the flexural strength and the microstructure of the test specimens of two PMMA bone cement brands: Simplex P and FIX 1.

View Article and Find Full Text PDF

Aim: All commercial chelating gels contain EDTA which reacts chemically with sodium hypochlorite (NaOCl). This research aimed to develop a non-EDTA clodronate gel and to measure physicochemical and functional gel properties of the novel and commercial gels.

Methodology: A 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!