MgO nanorods have been grown by thermal evaporation of Mg3N2 powders on Si (100) substrates coated with gold (Au) thin films. The MgO nanorods grown on Al2O3 (0001) were 0.1-0.2 microm in diameter and up to a few tens of micrometers in length. MgO/SnO2 coaxial nanorods have also been prepared by atomic layer deposition (ALD) of SnO2 onto the nanorods. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis results indicate that the MgO-cores and the SnO2 shells of the annealed coaxial nanorods are of a single crystalline nature with cubic and orthorhombic structures, respectively. The photoluminescence (PL) spectroscopy analysis results show that SnO2 coating slightly increases the PL emission intensity of MgO nanorods. The PL emission of the SnO2-coated MgO nanorods is found to be considerably enhanced by thermal annealing and to strongly depend on the annealing atmosphere. The PL emission intensity of the MgO/SnO2 coaxial nanorods has been significantly increased by annealing in a reducing atmosphere. The origin of the PL enhancement by annealing in a reducing atmosphere is discussed on the basis of energy-dispersive X-ray spectroscopy analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5882 | DOI Listing |
Luminescence
December 2024
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China.
MgO surface makes it easy to introduce a certain amount of oxygen vacancy and can enhance catalytic reaction activity. Besides, as a silicoaluminate mineral material, halloysite nanotube (HNT) has a unique tubular structure. In this paper, the HNTs@MgO composite was successfully synthesized based on natural clay material HNTs as a carrier, and the CTL sensor based on HNTs@MgO was successfully developed for the rapid determination of ether in air.
View Article and Find Full Text PDFNanomicro Lett
September 2024
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
Lowering the synthesis temperature of boron nitride nanotubes (BNNTs) is crucial for their development. The primary reason for adopting a high temperature is to enable the effective activation of high-melting-point solid boron. In this study, we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO-B system.
View Article and Find Full Text PDFSci Rep
July 2024
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
Direct conversion of biogas via the integrative process of dry reforming of methane (DRM) and catalytic methane decomposition (CDM) has received a great attention as a promising green catalytic process for simultaneous production of syngas and carbon nanotubes (CNTs). In this work, the effects of reaction temperature of 700-1100 °C and CH/CO ratio of biogas were investigated over NiMo/MgO catalyst in a fixed bed reactor under industrial feed condition of pure biogas. The reaction at 700 °C showed a rapid catalyst deactivation within 3 h due to the formation of amorphous carbon on catalyst surface.
View Article and Find Full Text PDFPolymers (Basel)
March 2024
Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples' Friendship University, Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
The structural and electro-thermophysical characteristics of organosilicon elastomers modified with multilayer carbon nanotubes (MWCNTs) synthesized on Co-Mo/AlO-MgO and metallic (Cu or Ni) microparticles have been studied. The structures were analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The main focus of this study was the influence of metallic dispersed fillers on the resistance of a modified elastomer with Cu and Ni to the degradation of electrophysical parameters under the action of applied electrical voltage.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2024
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!