Nanoscale biofilm modification-method concerning a myoglobin/11-MUA bilayers for bioelectronic device.

J Nanosci Nanotechnol

Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro (Sinsu-Dong), Mapo-Gu, Seoul, 121-742, Republic of Korea.

Published: May 2012

AI Article Synopsis

Article Abstract

We developed surface modification tools for the fabrication of a bioelectronic device which consists of a myoglobin monolayer self-assembled on an 11-MUA layer. To utilize a single protein as the active element, it was necessary to reduce protein aggregation on the protein layer in the nanobio electronic device, which was developed in our previous study and shown to display basic biomemory functions. Here, the reduction of myoglobin aggregation was accomplished by using 3-(3-cholamidopropyl) dimethylammonio-11-propanesulfonate (CHAPS) to fabricate a well-defined protein layer on the bioelectronic device. We investigated two different surface modification methods for making well oriented biofilm. The effects of CHAPS on the formation of a myoglobin layer self-assembled on an 11-MUA layer were examined by atomic force microscopy and Raman spectroscopy. The size of the myoglobin aggregates was reduced from 200-250 nm to 10-40 nm depending on treatment method. The sustaining redox property of the CHAPS treated myoglobin layer was examined using cyclic voltammetry. Using these techniques, we found that after surfactant CHAPS treatment, protein aggregation was dramatically reduced and the protein layer still maintained its inherent electrochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.5904DOI Listing

Publication Analysis

Top Keywords

bioelectronic device
12
protein layer
12
device developed
8
surface modification
8
self-assembled 11-mua
8
11-mua layer
8
protein aggregation
8
myoglobin layer
8
layer examined
8
layer
7

Similar Publications

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Advances in integrated power supplies for self-powered bioelectronic devices.

Nanoscale

January 2025

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.

Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.

View Article and Find Full Text PDF

Diabetes is a metabolic disorder caused by the body's inability to produce or use insulin. Considering the figures projected by the World Health Organization, research on insulin therapy is crucial. Hence, we present a soft biointerface based on a thiol-yne poly(ethylene glycol) (PEG) click-hydrogel as an advanced treatment option to administrate insulin.

View Article and Find Full Text PDF

Biointerface engineering of flexible and wearable electronics.

Chem Commun (Camb)

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable.

View Article and Find Full Text PDF

Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!