Ordered structures of barium titanate (BT) nanocubes, strontium titanate (ST) nanocubes and BT/ST nanocubes mixture were directly fabricated on Si and Pt-coated Si substrates using a capillary force assisted assembly method. The morphology of self-assembled structures was observed using field emission scanning electron microscopy (FE-SEM) and scanning probe microscopy (SPM). It was revealed that nanocubes were arranged with various degrees of ordering to develop multilayer and monolayer regions at the surface of substrates. The elemental mapping of the structure consisting of the nanocubes mixture was also investigated by transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX). It was revealed that BT and ST nanocubes coexisted homogeneously in the structure and had possibility to be arranged in order to each other. The piezoresponse properties obtained by scanning probe microscopy (SPM) indicated that the hetero-interface between BT and ST nanocubes would introduce anomaly in piezoelectric properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.6153 | DOI Listing |
ACS Nano
December 2024
Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.
We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China. Electronic address:
Neoantigens exclusively presented by human leukocyte antigens (HLAs) on cancer cell surfaces are newly discovered and highly cancer-specific biomarkers for cancer diagnosis. The current available method for detecting neoantigens is predominantly based on Mass spectrometry with inevitable limitations of high cost, complexity and isotope labels. In this work, we describe the development of an innovative catalytic electrochemical biosensor for ultrasensitive detection of neoantigen in cell lysates.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, PR China. Electronic address:
Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
Cuproptosis that utilizes copper ionophore to induce programmed cell death holds promise for enhancing the effectiveness of conventional anticancer therapies and triggering efficient adaptive immune responses. However, the non-tumor-specific release of Cu ions can induce cuproptosis and cause irreversible damage to normal tissues. To maximize the therapeutic effects of tumor-specific cuproptosis, this work reports for the first time the regulation of degradation behaviors of Cu-based nanomaterials using graphene quantum dots (GQDs) as a protection layer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Stellenbosch University Department of Chemistry and Polymer science, Chemistry and Polymer Science, SOUTH AFRICA.
Ethylene glycol or one of its oxidation products are believed to serve as reducing agents in the shape-controlled synthesis of Ag nanocubes (NCs) by the polyol process. The identity of end-groups of polyvinylpyrrolidone (PVP) impacts shape control with alcohol and aldehyde moieties serving as a primary Ag reducing agent. We explored the role of PVP end-groups in the polyol process by measuring the dependence of particle number density of Ag NCs produced on the initial concentration(s) of Ag and PVP using small angle x-ray scattering and statistically large particle size distributions analyzed by scanning electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!