Patients with an immunodeficiency in the course of Nijmegen breakage syndrome (NBS) that is caused by mutations in the NBN/NBS1 gene are prone to recurrent infections and malignancies, due to a defective DNA double-strand breaks repair mechanism. Four-color flow cytometry was used to analyze changes in B lymphocyte subsets reflecting the most important stages of peripheral B cell maturation. It was demonstrated that the humoral immune defect observed in NBS patients was caused by reduced numbers of B lymphocytes, but also by their aberrant maturation. Reduced relative and absolute counts of naïve and memory B cells were accompanied by a significant accumulation of the natural effector B lymphocytes. The elevated proportion of IgM-only memory and reduced proportion of IgM-negative cells within the memory B cell pool suggests that there is class-switch recombination defect in this population of cells in NBS patients, resulting in inadequate production of immunoglobulins. Because of the reduced T-cell counts, the T-cell dependent antigen response is severely impaired resulting in a lower frequency of memory B-cells. The T-cell independent B-cell differentiation pathway seems less affected. The reduced IgG and IgA levels in patients with NBS are caused both by ineffective class switch, at least due to poor T cell help, and low number of memory B cells. This study illustrates that the NBN gene product nibrin plays an important role at different levels in the B-cell system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.22108DOI Listing

Publication Analysis

Top Keywords

nijmegen breakage
8
breakage syndrome
8
nbs caused
8
nbs patients
8
memory cells
8
patients
5
reduced
5
memory
5
defect humoral
4
humoral immunity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!