To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)-related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413349 | PMC |
http://dx.doi.org/10.1083/jcb.201111012 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
J Clin Microbiol
December 2024
Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!