Number comparison tasks are characterized by distance and size effects. The distance effect reveals that the higher the distance is between two numbers, the easier their magnitude comparison is. Accordingly, people are thought to represent numbers on a spatial dimension, the mental number line, on which any given number corresponds to a location on the line. The size effect, instead, states that at any given distance, comparing two small numbers is easier than comparing two large numbers, thus suggesting that larger numbers are more vaguely represented than smaller ones. In the present work we first tested whether the participants were adopting a spatial strategy to solve a very simple numbers comparison task, by assessing the presence of the distance and the magnitude effect. Secondarily, we focused on the influence of gaze position on their performance. The present results provide evidence that gaze direction interferes with number comparisons, worsening the vague representation of larger numbers and further supporting the hypothesis of the overlapping between physical and mental spaces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10339-012-0517-1DOI Listing

Publication Analysis

Top Keywords

numbers easier
8
larger numbers
8
numbers
7
distance
5
gaze orientation
4
orientation interferes
4
interferes mental
4
mental numerical
4
numerical representation
4
number
4

Similar Publications

Efficacy of a vein visualisation device for facilitating peripheral venous line placement in adult patients with sickle cell disease: A randomised clinical trial.

Int J Nurs Stud

December 2024

Service de Médecine Interne, Centre National de Référence des Syndromes Drépanocytaires Majeurs de l'Adulte, AP-HP, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 20 rue Leblanc, F-75908 Paris cedex 15, France; Service d'aval des urgences, hopital Henri-Mondor Assistance Publique-Hôpitaux de Paris, 1 rue Gustave Eiffeil, 94000 Créteil, France; Université Paris Cité, Paris, France. Electronic address:

Background: Intravenous (IV) access is often required for the treatment of vaso-occlusive crises in patients with sickle cell disease, but can be particularly challenging due to recurrent venous damage. The AccuVein® device, uses near-infrared light technology to visualise veins for easier venepuncture.

Methods: A randomised, controlled trial of the efficacy of the AccuVeinAV400® device in the replacement of peripheral venous lines during a vaso-occlusive crisis was conducted at two centres in France.

View Article and Find Full Text PDF

Effect of Alloying Metal Elements on the Valence Band of β-GaO: A First-Principles Study.

J Phys Chem Lett

January 2025

Group of the Fourth-generation Semiconductor Materials and Devices, Shenzhen Pinghu Laboratory, Shenzhen 518111, China.

β-GaO is a candidate semiconductor material for high-power electronics due to its ultrawide bandgap and high Baliga's figure of merit. However, its -type doping is extremely difficult because of its low and flat band dispersion at its valence band maximum (VBM). A few reports have predicted that the VBM of β-GaO can be enhanced via alloying a specific metal (M), which enables -type conduction.

View Article and Find Full Text PDF

Current Non-Viral-Based Strategies to Manufacture CAR-T Cells.

Int J Mol Sci

December 2024

Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany.

The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods.

View Article and Find Full Text PDF

Volumetric measurement of manually drawn segmentations in cone beam computed tomography images of newly formed bone after sinus floor augmentation with bovine-derived bone substitutes.

J Stomatol Oral Maxillofac Surg

January 2025

Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria; Clinical Application of Artificial Intelligence in Dentistry (CAAID) Group, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria. Electronic address:

Precise volumetric measurement of newly formed bone after maxillary sinus floor augmentation (MSFA) can help clinicians in planning for dental implants. This study aimed to introduce a novel modular framework to facilitate volumetric calculations based on manually drawn segmentations of user-defined areas of interest on cone-beam computed tomography (CBCT) images MATERIAL & METHODS: Two interconnected networks for manual segmentation of a defined volume of interest and dental implant volume calculation, respectively, were used in parallel. The volume data of dental implant manufacturers were used for reference.

View Article and Find Full Text PDF

Two-dimensional (2D) materials hold great promise for the next-generation optoelectronics applications, many of which, including solar cell, rely on the efficient dissociation of exciton into free charge carriers. However, photoexcitation in atomically thin 2D semiconductors typically produces exciton with a binding energy of ~500 meV, an order of magnitude larger than thermal energy at room temperature. This inefficient exciton dissociation can limit the efficiency of photovoltaics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!