The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy-α-d-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree of 3.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2ob25222hDOI Listing

Publication Analysis

Top Keywords

capsular polysaccharide
12
neisseria meningitidis
8
synthesis preliminary
4
preliminary biological
4
biological evaluation
4
evaluation carba
4
carba analogues
4
analogues neisseria
4
meningitidis capsular
4
polysaccharide gram-negative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!