Tea [Camellia sinensis (L.) O. Kuntze] is an aluminum (Al) hyperaccumulator plant and is commercially important due to its high content of antioxidants. Although Al induced growth is well-known for the plants growing in acid soil, yet the cause underlying the stimulatory effect of Al has not been fully understood. To investigate the possible role of Al in growth induction, we studied morphological, physiological as well as biochemical changes of tea plant under different Al concentrations (0-4,000 μM). In hydroponics, Al (15 μM), enhanced shoot and root growth, but at higher concentrations, it caused oxidative damage which culminated in a cascade of biochemical changes, Al content increased concurrently with the maturity of the leaf as well as stem tissues than their younger counterparts. Hematoxylin staining indicated that Al accumulation started after 6 h of exposure in the tips of young roots and accumulation was dose dependent. The physiological parameters such as pigments, photosynthetic rate, transpiration and stomatal conductance were declined due to Al toxicity. Alteration in activated oxygen metabolism was also evidenced by increasing lipid peroxidation, membrane injury, evolution of superoxide anions and accumulation of H(2)O(2). Contents of phenols initially exhibited an acceleration which gradually plummeted at higher levels whereas total sugar and starch contents decimated beyond 15 μM of Al concentration. Activities of antioxidant defense enzymes were increased with the elevated concentration of Al. Expression of citrate synthase gene was up-regulated in the mature leaves, young as well as old roots simultaneously with increased concentration of Al in those parts; indicating the formation of Al-citrate complex. These results cooperatively specified that Al concentration at lower level promoted growth but turned out to be a stressor at elevated stages indicating the sensitivity of the cultivar (T-78) to Al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-012-9576-0 | DOI Listing |
Annu Rev Food Sci Technol
January 2025
4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:
Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFFood Funct
January 2025
Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Prosthodontics, Government Dental College, Kozhikode, Kerala, India, Orcid: https://orcid.org/0000-0003-1456-3851.
Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.
Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.
PeerJ
January 2025
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!