Chronic obstructive pulmonary disease (COPD) is classified into emphysema and chronic bronchitis, which are thought to result from different pathophysiological pathways. Smoking-induced lung parenchymal destruction and inadequate repair are involved in the pathogenesis of emphysema. In addition, decreased expression of vascular endothelial growth factor and increased endothelial cell apoptosis in the lung may participate in emphysema pathogenesis. As stem cells, circulating endothelial progenitor cells (EPCs) may play a key role in the maintenance of vascular integrity by replacing and repairing the damaged endothelial cells in the tissues. To determine whether the lack of appropriate repair by circulating EPCs in cases of smoking-induced endothelial cell injury participates in emphysema pathogenesis, we determined the association between the colony-forming or migratory capacity of circulating EPCs and the presence of emphysema in 51 patients with COPD. The patients were divided into emphysema (n = 23) and non-emphysema groups (n = 28) based on high-resolution computed tomography. Twenty-two smokers with normal lung function and 14 normal non-smokers served as controls. Circulating EPCs isolated from patients with emphysema showed significantly lower colony-forming units (CFUs) than those from patients with non-emphysema group, smokers with normal lung function, and normal non-smokers. EPCs from patients with emphysema showed significantly lower migratory capacity than those from normal non-smoking controls (p < 0.05). On multivariate analysis, the EPC-CFU was independently associated with emphysema (OR 0.944, 95% CI = 0.903-0.987, p = 0.011). Thus, impaired functions of circulating EPCs may contribute to the development of emphysema.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1620/tjem.227.321 | DOI Listing |
Front Immunol
January 2025
Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States.
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Radiobiology Laboratory, Department of Molecular Biology and Biotechnology, Atomic Energy Commission (AEC), Damascus, Syria.
Background: Angiogenesis is mediated by endothelial progenitor cells (EPCs) derived from bone-marrow. In this prospective study, we tried to investigate the clinical utility of circulating EPCs in lung cancer (LC) patients.
Materials And Methods: Flow cytometry technique was used to assess circulating EPCs according to the immuno-phenotype CD45 CD34 CD133 CD146 mononuclear cells.
Am J Prev Cardiol
December 2024
Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel.
Background: The role of circulating endothelial progenitor cells (cEPCs) in vascular repair and their association to cardiovascular protection is well established.
Objectives: We examined the effect of proprotein convertase subtilisin kexin type 9 monoclonal antibodies (PCSK9 mAb) on cEPCs in adults with hypercholesterolemia and cardiovascular disease, aiming to establish a pleotropic class effect.
Methods: Non-interventional prospective study in patients with cardiovascular disease treated with either evolocumab or alirocumab.
Thromb Res
January 2025
Hospital Universitario de Gran Canaria Doctor Negrín, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
Stem Cell Res Ther
November 2024
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Dapi Road, Niaosung Dist., Kaohsiung City, 83301, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!