In mammals, a distinct RNA polymerase II form, RNAPII(G) contains a novel subunit Gdown1 (encoded by POLR2M), which represses gene activation, only to be reversed by the multisubunit Mediator co-activator. Here, we employed single-particle cryo-electron microscopy (cryo-EM) to disclose the architectures of RNAPII(G), RNAPII and RNAPII in complex with the transcription initiation factor TFIIF, all to ~19 Å. Difference analysis mapped Gdown1 mostly to the RNAPII Rpb5 shelf-Rpb1 jaw, supported by antibody labelling experiments. These structural features correlate with the moderate increase in the efficiency of RNA chain elongation by RNAP II(G). In addition, our updated RNAPII-TFIIF map showed that TFIIF tethers multiple regions surrounding the DNA-binding cleft, in agreement with cross-linking and biochemical mapping. Gdown1's binding sites overlap extensively with those of TFIIF, with Gdown1 sterically excluding TFIIF from RNAPII, herein demonstrated by competition assays using size exclusion chromatography. In summary, our work establishes a structural basis for Gdown1 impeding initiation at promoters, by obstruction of TFIIF, accounting for an additional dependent role of Mediator in activated transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433857PMC
http://dx.doi.org/10.1038/emboj.2012.205DOI Listing

Publication Analysis

Top Keywords

gdown1
5
tfiif
5
regulation mammalian
4
mammalian transcription
4
transcription gdown1
4
gdown1 novel
4
novel steric
4
steric crosstalk
4
crosstalk revealed
4
revealed cryo-em
4

Similar Publications

Dynamic regulation of transcription is crucial for the cellular responses to various environmental or developmental cues. Gdown1 is a ubiquitously expressed, RNA polymerase II (Pol II) interacting protein, essential for the embryonic development of metazoan. It tightly binds Pol II and competitively blocks the binding of TFIIF and possibly other transcriptional regulatory factors, yet its cellular functions and regulatory circuits remain unclear.

View Article and Find Full Text PDF

Nuclear export restricts Gdown1 to a mitotic function.

Nucleic Acids Res

February 2022

Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA.

Approximately half of purified mammalian RNA polymerase II (Pol II) is associated with a tightly interacting sub-stoichiometric subunit, Gdown1. Previous studies have established that Gdown1 inhibits transcription initiation through competitive interactions with general transcription factors and blocks the Pol II termination activity of transcription termination factor 2 (TTF2). However, the biological functions of Gdown1 remain poorly understood.

View Article and Find Full Text PDF

Reconstitution of Pol II (G) responsive form of the human Mediator complex.

Turk J Biol

June 2021

Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara Turkey.

RNA polymerase II (Pol II) is a 12 subunit protein complex from yeast to human that is required for gene expression. Gdown1 containing Pol II [Pol II (G)] is a special form of Pol II that is catalytically inactive and heavily depends on the 30-subunit Mediator complex for its activator and basal dependent function in vitro. Here we report for the first time, the identification and the generation of a 15-subunit human Mediator complex via the novel multibac baculovirus expression system that is fully responsive to Pol II (G).

View Article and Find Full Text PDF

Regulation of hepatocyte cell cycle re-entry by RNA polymerase II-associated Gdown1.

Cell Cycle

December 2020

Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.

Liver is the central organ responsible for whole-body metabolism, and its constituent hepatocytes are the major players that carry out liver functions. Although they are highly differentiated and rarely divide, hepatocytes re-enter the cell cycle following hepatic loss due to liver damage or injury. However, the exact molecular mechanisms underlying cell cycle re-entry remain undefined.

View Article and Find Full Text PDF

Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including ), and up-regulation of through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!