Iron-catalyzed spin-capable multi-walled carbon nanotubes (MWCNTs) were grown on a SiO2 wafer by chemical vapor deposition, which was carried out at 780 degrees C using C2H2 and H2 gases. We fabricated a flexible transparent film using the spun MWCNTs. The MWCNT sheets were produced by being continuously pulled out from well-aligned MWCNTs grown on a substrate. The MWCNT sheet films were manufactured by simply carrying out direct coating on a flexible film or glass. The thickness of the sheet film decreased remarkably when alcohol was sprayed on the surface of the sheet. The alcohol spraying increased the transmittance and decreased the electrical resistance of the MWCNT sheet films. The sheets obtained after alcohol spraying had a resistance of -699 omega and a transmittance of 81%-85%. The MWCNT sheet films were heated by applying direct current. The transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, we tested the field emission of the sheet films. The sheet films showed a turn-on voltage of -1.45 V/microm during field emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5598 | DOI Listing |
Mass Spectrom (Tokyo)
January 2025
JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
Hypothesis: Understanding the Langmuir film formation process of flexible and soft materials like graphene oxide (GO) is essential, as it shows different trends compared to the conventional surface pressure-area (π-A) and compressional modulus (ε) isotherms of hard materials. Additionally, the size distribution and mechanical properties of the GO are assumed to affect the distinctive Langmuir-Blodgett (LB) film morphologies, such as overlaps and wrinkles.
Experiment: To gain a deeper insights of phase transitions in GO LB films, we propose a novel analysis of elastic tensile modulus versus surface pressure (|ε|-π) isotherms.
PLoS One
January 2025
Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan.
Since abdominal adhesion are quite problematic in abdominal and pelvic surgery, the conventional HA/CMC film are commonly used as an anti-adhesive material. However, such types are difficult to be rolled and delivered through the port of laparoscopic surgical devices due to adherence to the laparoscopic port or other parts of the films. To create an anti-adhesion film with more favorable handling properties and anti-adhesive effect, we developed a novel punctate uneven gelatin film (PU GF).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.
MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!