Emission spectroscopy of the laser induced plasma is used to characterize the laser synthesis of silver nanoparticles in water via attributing the thermodynamic parameters of the plasma plume to qualitative features of the synthesized nanoparticles. In this approach, effects of the pulse energy and frequency of a pulsedNd:YAGlaser on nanoparticles synthesis yield and size distribution is studied by an analysis on the behavior of electron temperature and total density of the plasma dominant species (neutral Ag atoms; AgI). Variation of these thermodynamic parameters obtained from the time-integrated emission spectroscopy of the induced plasma was found to be in a closed correlation with the mentioned characteristics of the synthesized nanoparticles. Assessment of the qualitative features of nanoparticles was performed by evaluating the particles concentration in liquid, optical absorption spectroscopy and transmission electron microscopy. Finally, the optimum operating conditions for the synthesis of silver nanoparticles in pure water is determined by summarizing the results of emission spectroscopy observations attributed to the mentioned characteristics of synthesized nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.5830 | DOI Listing |
Biol Trace Elem Res
January 2025
Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
Contamination of aquatic ecosystems with heavy metals poses a significant global issue due to its hazardous effects and persistent accumulation in living organisms. This study analyzed 51 fish samples from two species of Black Fish, Capoeta saadii and Capoeta trutta, collected from Iran's Khorramroud River during the summer and fall of 2022 to assess heavy metal accumulation in their gill, liver, and muscle tissues. After biometry, the studied tissues of each fish were isolated to measure the concentration of heavy metals (cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), copper (Cu), and nickel (Ni)).
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Applied Photonics, INESC TEC, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
Dy/Tb co-doped glasses have drawn profound attention for their potential in solid state lighting due to their unique luminescence properties. This research highlights the effect of compositional variation on structural and optical characteristics of Dy/Tb co-doped phospho-tellurite glasses through a comprehensive analysis involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) studies. XRD and FTIR spectroscopy are conducted to characterize the glass matrix and confirm its structural integrity.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, Lund University, BOX 118, Lund, 221 00, SWEDEN.
In recent years, studies of surfaces at more realistic conditions has advanced significantly, leading to an increased understanding of surface dynamics under reaction conditions. The development has mainly been due to the development of new experimental techniques or new experimental approaches. Techniques such as High Pressure Scanning Tunneling/Force Microscopy (HPSTM/HPAFM), Ambient Pressure X-ray Photo emission Spectroscopy (APXPS), Surface X-Ray Diffraction (SXRD), Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS) and Planar Laser Induced Fluorescence (PLIF) at semi-realistic conditions has been used to study planar model catalysts or industrial materials under operating conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!